Skip to main content
Log in

Electrochemical single nucleotide polymorphisms genotyping on surface immobilized three-dimensional branched DNA nanostructure

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An electrochemical assay for single nucleotide polymorphisms (SNPs) genotyping is reported. Although electrochemical method is sensitive for DNA detection on surfaces, the ability of surface assay to precisely recognize DNA hybridization event is sacrificed to some extent due to the crowded confined surfaces environments that disfavor DNA hybridization. In the present study, we employed branched tetrahedron structure probes (TSPs) to replace regular linear single stranded DNA capture probes that were immobilized on solid surfaces. This three-dimensional DNA nanostructure lowers the density of immobilized DNA probes on confined surfaces, providing a hybridization environment that is similar to homogenous solution. This TSP-based electrochemical assay reveals excellent performance for SNPs genotyping with concentration as low as 1 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gut IG. Automation in genotyping of single nucleotide polymorphisms. Hum Mutat, 2001, 17: 475–492

    Article  CAS  Google Scholar 

  2. Schork NJ, Fallin D, Lanchbury JS. Single nucleotide polymorphisms and the future of genetic epidemiology. Clin Genet, 2000, 58: 250–264

    Article  CAS  Google Scholar 

  3. Kwok PY. Methods for genotyping single nucleotide polymorphisms. Annu Rev Genomics Hum Genet, 2001, 2: 235–258

    Article  CAS  Google Scholar 

  4. Ju HX, Zhao HT. Electrochemical biosensors for DNA analysis. Front Biosci, 2005, 10: 37–46

    Article  CAS  Google Scholar 

  5. Alfonta L, Singh AK, Willner I. Liposomes labeled with biotin and horseradish peroxidase: A probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes. Anal Chem, 2001, 73: 91–102

    Article  CAS  Google Scholar 

  6. Patolsky F, Katz E, Bardea A, Willner I. Enzyme-linked amplified electrochemical sensing of oligonucleotide-DNA interactions by means of the precipitation of an insoluble product and using impedance spectroscopy. Langmuir, 1999, 15: 3703–3706

    Article  CAS  Google Scholar 

  7. Herne TM, Tarlov MJ. Characterization of DNA probes immobilized on gold surfaces. J Am Chem Soc, 1997, 119: 8916–8920

    Article  CAS  Google Scholar 

  8. Steel AB, Herne TM, Tarlov MJ. Electrochemical quantitation of DNA immobilized on gold. Anal Chem, 1998, 70: 4670–4677

    Article  CAS  Google Scholar 

  9. Wong ELS, Chow E, Gooding JJ. DNA recognition interfaces: The influence of interfacial design on the efficiency and kinetics of hybridization. Langmuir, 2005, 21: 6957–6965

    Article  CAS  Google Scholar 

  10. Fan CH, Plaxco KW, Heeger AJ. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci USA, 2003, 100: 9134–9137

    Article  CAS  Google Scholar 

  11. Zhang J, Song SP, Zhang LY, Wang LH, Wu HP, Pan D, Fan CH. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): Effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J Am Chem Soc, 2006, 128: 8575–8580

    Article  CAS  Google Scholar 

  12. Liu G, Sun CF, Li D, Song SP, Mao BW, Fan CH, Tian ZQ. Gating of redox currents at gold nanoelectrodes via DNA hybridization. Adv Mater, 2010, 22: 2148–2150

    Article  CAS  Google Scholar 

  13. Mitchell N, Schlapak R, Kastner M, Armitage D, Chrzanowski W, Riener J, Hinterdorfer P, Ebner A, Howorka S. A DNA nanostructure for the functional assembly of chemical groups with tunable stoichiometry and defined nanoscale geometry. Angew Chem Int Ed, 2009, 48: 525–527

    Article  CAS  Google Scholar 

  14. Wang J, Xu DK, Kawde AN, Polsky R. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal Chem, 2001, 73: 5576–5581

    Article  CAS  Google Scholar 

  15. Ju HX, Ye YK, Zhao JH, Zhu YL. Hybridization biosensor using di(2,2′-bipyridine)osmium (III) as electrochemical indicator for detection of polymerase chain reaction product of hepatitis B virus DNA. Ana Biochem, 2003, 313: 255–261

    Article  CAS  Google Scholar 

  16. Li D, Song SP, Fan CH. Target-responsive structural switching for nucleic acid-based sensors. Acc Chem Res, 2010, 43: 631–641

    Article  Google Scholar 

  17. Song SP, Qin Y, He Y, Huang Q, Fan CH, Chen HY. Functional nanoprobes for ultrasensitive detection of biomolecules. Chem Soc Rev, 2010, 39: 4234–4243

    Article  CAS  Google Scholar 

  18. Song SP, Wang LH, Li J, Zhao JL, Fan CH. Aptamer-based biosensors. Trac-Trends Anal Chem, 2008, 27: 108–117

    Article  CAS  Google Scholar 

  19. Pei H, Lu N, Wen YL, Song SP, Liu Y, Yan H, Fan CH. A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. Adv Mater, 2010, 22: 4754–4758

    Article  CAS  Google Scholar 

  20. Rothemund PWK. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440: 297–302

    Article  CAS  Google Scholar 

  21. Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science, 2009, 323: 112–116

    Article  CAS  Google Scholar 

  22. Wan Y, Lao RJ, Liu G, Song SP, Wang LH, Li D, Fan CH. Multiplexed electrochemical DNA sensor for single-nucleotide polymorphism typing by using oligonucleotide-incorporated nonfouling surfaces. J Phys Chem B, 2010, 114: 6703–6706

    Article  CAS  Google Scholar 

  23. Zhang YL, Wang Y, Wang HB, Jiang JH, Shen GL, Yu RQ, Li JH. Electrochemical DNA biosensor based on the proximity-dependent surface hybridization assay. Anal Chem, 2009, 81: 1982–1987

    Article  CAS  Google Scholar 

  24. Lao RJ, Song SP, Wu HP, Wang LH, Zhang ZZ, He L, Fan CH. Electrochemical interrogation of DNA monolayers on gold surfaces. Anal Chem, 2005, 77: 6475–6480

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChunHai Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, Z., Pei, H., Wang, L. et al. Electrochemical single nucleotide polymorphisms genotyping on surface immobilized three-dimensional branched DNA nanostructure. Sci. China Chem. 54, 1273–1276 (2011). https://doi.org/10.1007/s11426-011-4327-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4327-6

Keywords

Navigation