Skip to main content
Log in

Preparation of ferrocenyl imidazolines using bis(triphenyl)oxodiphosphonium trifluoromethanesulfonate

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

An efficient synthesis of ferrocenyl imidazolines starting from ferrocenyl carboxylic acids has been developed. Bis(triphenyl)oxodiphosphonium trifluoromethanesulfonate was used to convert smoothly ferrocenyl carboxylic amides bearing an amine side chain, derived from ferrocenyl carboxylic acids and 1,2-diamines, to their corresponding ferrocenyl imidazolines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hayashi T, Togni A. Eds. In Ferrocenes. VCH: Weinheim, Germany, 1995

    Google Scholar 

  2. Togni A, Haltermann R L. eds. In Metallocenes. VCH: Weinheim, Germany, 1998

    Google Scholar 

  3. Richards C F, Locke A J. Recent advances in the generation of non-racemic ferrocene derivatives and their application to asymmetric synthesis. Tetrahedron: Asymmetry, 1998, 9: 2377–2407

    Article  CAS  Google Scholar 

  4. Dai L X, Tu T, You S L, Deng W-P, Hou X L. Asymmetric catalysis with chiral ferrocene ligands. Acc Chem Res, 2003, 36: 659–667

    Article  CAS  Google Scholar 

  5. Atkinson R C J, Gibson V C, Long N J. The syntheses and catalytic applications of unsymmetrical ferrocene ligands. Chem Soc Rev, 2004, 33: 313–328

    Article  CAS  Google Scholar 

  6. Arrayás R G, Adrio J, Carretero J C. Recent applications of chiral ferrocene ligands in asymmetric catalysis. Angew Chem Int Ed, 2006, 45: 7674–7715

    Article  Google Scholar 

  7. You S L, Zhou Y-G, Hou X L, Dai L X. Enantioselective palladium catalyzed allylic substitution with chiral thioether derivatives of ferrocenyl-oxazoline and the role of planar chirality in this reaction. Chem Commun, 1998, 2765–2766

  8. You S L, Hou X L, Dai L X. Synthesis of planar chiral selenide derivatives of ferrocenyl-oxazoline and their application in enantioselective palladium catalyzed allylic substitution reaction. Tetrahedron: Asymmetry, 2000, 11: 1495–1500

    Article  CAS  Google Scholar 

  9. Deng W P, You S L, Hou X L, Dai L X, Yu Y H, Xia W, Sun J. Importance of planar chirality in chiral catalysts with three chiral elements: The role of planar chirality in 2′-substituted 1,1′-P,N- ferrocene ligands on the enantioselectivity in Pd-catalyzed allylic substitution. J Am Chem Soc, 2001, 123: 6508–6519

    Article  CAS  Google Scholar 

  10. You S L, Zhu X Z, Luo Y M, Hou X L, Dai L X. Highly regio- and enantioselective Pd-catalyzed allylic alkylation and amination of monosubstituted allylic acetates with novel ferrocene P,N-ligands. J Am Chem Soc, 2001, 123: 7471–7472

    Article  CAS  Google Scholar 

  11. You S L, Hou X L. Dai L X, Yu Y H, Xia W. Role of planar chirality of S,N- and P,N-ferrocene ligands in Palladium-catalyzed allylic substitutions. J Org Chem, 2002, 67: 4684–4695

    Article  CAS  Google Scholar 

  12. Ma J, Cui X, Gao L, Wu Y. Ferrocenylimidazoline palladacycles: Syntheses, crystal structures and applications as catalysts for Suzuki cross coupling reaction in water. Inorg Chem Commun, 2007, 10: 762–766

    Article  CAS  Google Scholar 

  13. Ma J, Cui X L, Zhang B, Song M P, Wu Y J. Ferrocenylimidazoline palladacycles: efficient phosphine-free catalysts for Suzuki-Miyaura cross-coupling reaction. Tetrahedron, 2007, 63: 5529–5538

    Article  CAS  Google Scholar 

  14. Peters R, Fischer D F. Preparation and diastereoselective ortho-metalation of chiral ferrocenyl imidazolines: Remarkable influence of LDA as metalation additive. Org Lett, 2005, 7: 4137–4140

    Article  CAS  Google Scholar 

  15. Peters R, Xin Z Q, Fischer D F, Schweizer W B. Synthesis and diastereoselective ortho-lithiation/cyclopalladation of enantiopure [2-imidazolyl]-1′,2′,3′,4′,5′-pentamethylferrocenes and -1′,2′,3′,4′, 5′-pentaphenylferrocenes. Organometallics, 2006, 25: 2917–2920

    Article  CAS  Google Scholar 

  16. Weiss M E, Fischer D F, Xin Z Q, Jautze S, Schweizer W B, Peters R. Practical, highly active, and enantioselective ferrocenyl-imidazoline palladacycle catalysts (FIPs) for the aza-Claisen rearrangement of N-para-methoxyphenyl trifluoroacetimidates. Angew Chem Int Ed, 2006, 45: 5694–5698

    Article  CAS  Google Scholar 

  17. Jautze S, Seiler P, Peters R. Macrocyclic ferrocenyl-bisimidazoline palladacycle dimers as highly active and enantioselective catalysts for the aza-Claisen rearrangement of Z-configured N-para-methoxyphenyl trifluoroacetimidates. Angew Chem Int Ed, 2007, 46: 1260–1264

    Article  CAS  Google Scholar 

  18. Fischer D F, Xin Z Q, Peters R. Asymmetric formation of allylic amines with N-substituted quaternary stereocenters by PdII-catalyzed aza-Claisen rearrangements. Angew Chem Int Ed, 2007, 46: 7704–7707

    Article  CAS  Google Scholar 

  19. Jautze S, Seiler P, Peters R. Synthesis of nearly enantiopure allylic amines by aza-Claisen rearrangement of Z-configured alylic trifluoroacetimidates catalyzed by highly active ferrocenylbispalladacycles. Chem Eur J, 2008, 14: 1430–1444

    Article  CAS  Google Scholar 

  20. Xin Z-q, Fischer D F, Peters R. Catalytic asymmetric formation of secondary allylic amines by aza-Claisen rearrangement of trifluoroacetimidates. Synlett, 2008, 1495-1499

  21. Jautze S, Peters R. Enantioselective bimetallic catalysis of michael additions forming quaternary stereocenters. Angew Chem Int Ed, 2008, 47: 9284–9288

    Article  CAS  Google Scholar 

  22. Hollis T K, Overman L E. Palladium catalyzed enantioselective rearrangement of allylic imidates to allylic amides. J Organomet Chem, 1999, 576: 290–299

    Article  CAS  Google Scholar 

  23. Anderson C E, Overman L E. Catalytic asymmetric rearrangement of allylic trichloroacetimidates. A practical method for preparing allylic amines and congeners of high enantiomeric purity. J Am Chem Soc, 2003, 125: 12412–12413

    Article  CAS  Google Scholar 

  24. Overman L E, Owen C E, Pavan M M, Richards C J. Catalytic asymmetric rearrangement of allylic N-aryl trifluoroacetimidates. A useful method for transforming prochiral allylic alcohols to chiral allylic amines. Org Lett, 2003, 5: 1809–1812

    Article  CAS  Google Scholar 

  25. Kirsch S F, Overman L E, Watson M P. Monomeric cobalt oxazoline palladacycles (COP). Useful catalysts for catalytic asymmetric rearrangement of allylic trichloroacetimidates. J Org Chem, 2004, 69: 8101–8104

    Article  CAS  Google Scholar 

  26. Prasad R S, Anderson C E, Richards C J, Overman L E. Synthesis of tert-leucine-derived cobalt oxazoline palladacycles. Reversal of palladation diastereoselectivity and application to the asymmetric rearrangement of N-aryl trifluoroacetimidates. Organometallics, 2005, 24: 77–81

    Article  CAS  Google Scholar 

  27. Anderson C E, Donde Y, Douglas C J, Overman L E. Catalytic asymmetric synthesis of chiral allylic amines. Evaluation of ferrocenyloxazoline palladacycle catalysts and imidate motifs. J Org Chem, 2005, 70: 648–657

    Article  CAS  Google Scholar 

  28. Nomura H, Richards C J. An investigation into the allylic imidate rearrangement of trichloroacetimidates catalysed by cobalt oxazoline palladacycles. Chem Eur J, 2007, 13: 10216–10224

    Article  CAS  Google Scholar 

  29. You S-L, Razavi H, Kelly J W. A biomimetic synthesis of thiazolines using hexaphenyloxodiphosphonium trifluoromethanesulfonate. Angew Chem Int Ed, 2003, 42: 83–3363

    Article  CAS  Google Scholar 

  30. You S L, Kelly J W. Total synthesis of Dendroamide A: Oxazole and thiazole construction using an oxodiphosphonium salt. J Org Chem, 2003, 68: 9506–9509

    Article  CAS  Google Scholar 

  31. You S L, Kelly J W. Highly efficient biomimetic total synthesis and structural verification of bistratamides E and J from Lissoclinum bistratum. Chem Eur J, 2004, 10: 71–75

    Article  CAS  Google Scholar 

  32. You S L, Songpon D, Kelly J W. Solid-phase synthesis and stereochemical assignments of tenuecyclamides A-D employing heterocyclic amino acids derived from commercially available Fmoc α-amino acids. Org Lett, 2004, 6: 2627–2730

    Article  CAS  Google Scholar 

  33. You S L, Kelly J W. The total synthesis of bistratamides F-I. Tetrahedron, 2005, 61: 241–249

    Article  CAS  Google Scholar 

  34. You S L, Kelly J W. Total synthesis of didmolamides A and B. Tetrahedron Lett, 2005, 46: 2567–2570

    Article  CAS  Google Scholar 

  35. You S L, Kelly J W. Highly efficient enantiospecific synthesis of imidazoline-containing amino acids using bis(triphenyl)oxodiphosphonium trifluoromethanesulfonate. Org Lett, 2004, 6: 1681–1683

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShuLi You.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20872159), National Basic Research Program of China (973 Program) (Grant No. 2009CB825300), the Knowledge Innovation Program of the Chinese Academy of Sciences, and the Science and Technology Commission of Shanghai Municipality (Grant Nos. 07pj14106 & 07JC14063)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Xia, J., Dai, X. et al. Preparation of ferrocenyl imidazolines using bis(triphenyl)oxodiphosphonium trifluoromethanesulfonate. Sci. China Ser. B-Chem. 52, 1331–1336 (2009). https://doi.org/10.1007/s11426-009-0161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0161-5

Keywords

Navigation