Skip to main content
Log in

Self-normalized moderate deviations for independent random variables

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let X 1,X 2, … be a sequence of independent random variables (r.v.s) belonging to the domain of attraction of a normal or stable law. In this paper, we study moderate deviations for the self-normalized sum Σ n i=1 X i /V n,p where V n,p = (Σ n i=1 |X i |p)1/p (p > 1). Applications to the self-normalized law of the iterated logarithm, Studentized increments of partial sums, t-statistic, and weighted sum of independent and identically distributed (i.i.d.) r.v.s are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bentkus V, Bloznelis M, Götze F. A Berry-Esseen bound for Student’s statistic in the non-i.i.d. case. J Theor Probab, 1996, 9: 765–796

    Article  MATH  Google Scholar 

  2. Bingham N H, Goldie C M, Teugels J L. Regular Variation. Cambridge: Cambridge University Press, 1987

    MATH  Google Scholar 

  3. Chow Y S, Teicher H. Probability Theory, Independence, Interchangeability, Martingales. New York: Springer-Verlag, 1997

    MATH  Google Scholar 

  4. Cramér, H. Sur un nouveaux théoréme limite de la théorie des probabilités. Actualités Sci Indust, 1938, 736: 5–23

    Google Scholar 

  5. Csörgö M, Lin Z Y, Shao Q M. Studentized increments of partial sums. Sci China Ser A, 1994, 37: 265–276

    MathSciNet  MATH  Google Scholar 

  6. Csörgö M, Révész, P. Strong Approximations in Probability and Statistics. New York: Academic Press, 1981

    MATH  Google Scholar 

  7. Csörgö M, Shao Q M. A self-normalized Erdös-Rényi type strong law of large numbers. Stochastic Process Appl, 1994, 50: 187–196

    Article  MathSciNet  MATH  Google Scholar 

  8. Griffin P, Kuelbs J. Self-normalized laws of the iterated logarithm. Ann Probab, 1989, 17: 1571–1601

    Article  MathSciNet  MATH  Google Scholar 

  9. Jing B Y, Shao Q M, Wang Q Y. Self-normalized Cramér type large deviations for independent random variables. Ann Probab, 2002, 31: 2167–2215

    MathSciNet  Google Scholar 

  10. Petrov V V. On the probabilities of large deviations for sums of independent random variables. Theory Probab Appl, 1965, 10: 287–298

    Article  MATH  Google Scholar 

  11. Petrov V V. Sums of Independent Random Variables. New York: Springer-Verlag, 1975

    Book  Google Scholar 

  12. Pruitt W E. General one-sided laws of the iterated logarithm. Ann Probab, 1981, 9: 1–48

    Article  MathSciNet  MATH  Google Scholar 

  13. Shao Q M. Self-normalized large deviations. Ann Probab, 1997, 25: 285–328

    Article  MathSciNet  MATH  Google Scholar 

  14. Shao Q M. A Cramér type large deviation result for Student’s t-statistic. J Theoret Probab, 1999, 12: 385–398

    Article  MathSciNet  MATH  Google Scholar 

  15. Strassen V. A converse to the law of the iterated logarithm. Z Wahrsch verw Gebiete, 1966, 4: 265–268

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang Q Y, Jing B Y. An exponential non-uniform Berry-Esseen bound for self-normalized sums. Ann Probab, 1999, 27: 2068–2088

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HanYing Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jing, B., Liang, H. & Zhou, W. Self-normalized moderate deviations for independent random variables. Sci. China Math. 55, 2297–2315 (2012). https://doi.org/10.1007/s11425-012-4527-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-012-4527-3

Keywords

MSC(2010)

Navigation