Skip to main content
Log in

Two-stage local M-estimation of additive models

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

This paper studies local M-estimation of the nonparametric components of additive models. A two-stage local M-estimation procedure is proposed for estimating the additive components and their derivatives. Under very mild conditions, the proposed estimators of each additive component and its derivative are jointly asymptotically normal and share the same asymptotic distributions as they would be if the other components were known. The established asymptotic results also hold for two particular local M-estimations: the local least squares and least absolute deviation estimations. However, for general two-stage local M-estimation with continuous and nonlinear ψ-functions, its implementation is time-consuming. To reduce the computational burden, one-step approximations to the two-stage local M-estimators are developed. The one-step estimators are shown to achieve the same efficiency as the fully iterative two-stage local M-estimators, which makes the two-stage local M-estimation more feasible in practice. The proposed estimators inherit the advantages and at the same time overcome the disadvantages of the local least-squares based smoothers. In addition, the practical implementation of the proposed estimation is considered in details. Simulations demonstrate the merits of the two-stage local M-estimation, and a real example illustrates the performance of the methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedman J H, Stuetzle W. Projection pursuit regression. J Amer Statist Assoc, 76: 817–823 (1981)

    Article  MathSciNet  Google Scholar 

  2. Stone C J. Additive regression and other nonparametric models. Ann Statist, 13: 689–705 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Stone C J. The dimensionality reduction principle for generalized additive models. Ann Statist, 14: 590–606 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hastie T, Tibshirani R J. Generalized Additive Models. London: Chapman & Hall, 1990

    MATH  Google Scholar 

  5. Breiman L, Friedman J H. Estimating optimal transformations for multiple regression and correlation. J Amer Statist Assoc, 80: 580–619 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buja A, Hastie T, Tibshirani R J. Linear smoothers and additive models. Ann Statist, 17: 453–510 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Opsomer J D, Ruppert D. Fitting a bivariate additive model by local polynomial regression. Ann Statist, 25: 186–211 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mammen E, Linton O, Nielsen J P. The existence and asymptotic properties of backfitting projection algorithm under weak conditions. Ann Statist, 27: 1443–1490 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Opsomer J D. Asymptotic properties of backfitting estimator. J Multivariate Anal, 73: 166–179 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tjøstheim D, Auestad B H. Nonparametric identification of nonlinear time series: Projections. J Amer Statist Assoc, 89: 1398–1409 (1994)

    Article  MathSciNet  Google Scholar 

  11. Linton O, Nielsen J P. A kernel method of estimating structured nonparametric regression based on marginal integration. Biometrika, 82: 93–100 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen R, Härdle W, Linton O, et al. Nonparametric estimation of additive separable regression models. In: Härdle W, Schimek M, eds. Statistical Theory and Computational Aspects of Smoothing. Heidelberg: Physica, 1996, 247–253

    Google Scholar 

  13. Linton O, Härdle W. Estimating additive regression models with known link function. Biometrika, 83: 529–540 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fan J, Härdle W, Mammen E. Direct estimation of low-dimensional components in additive models. Ann Statist, 26: 943–971 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Stone C J. The use of polynomial splines and their tensor products in multivariate function estimation. Ann Statist, 22: 118–184 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Newey W K. Convergence rates and asymptotic normality for series estimators. J Multivariate Anal, 73: 147–168 (1997)

    MathSciNet  Google Scholar 

  17. Horowitz J L, Mammen E. Nonparametric estimation of an additive model with a link function. Ann Statist, 32: 2412–2443 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Linton O. Estimating additive nonparametric models by partial L q norm: the curse of fractionality. Econometric Theory, 17: 1037–1050 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fan J, Jiang J. Variable bandwidth and one-step local M-estimator. Sci China Ser A-Math, 43: 65–81 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang J, Mack Y P. Robust local polynomial regression for dependent data. Statist Sinica, 11: 705–722 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Huber P J. Robust Statistics. New York: Wiley, 1981

    MATH  Google Scholar 

  22. He X, Shi P. Bivariate tensor-product B-splines in a partly linear model. J Multivariate Anal, 58: 162–181 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Doksum K, Koo J-Y. On spline estimators and prediction intervals in nonparametric regression. Comput Statist Data Anal, 35: 67–82 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Horowitz J L, Lee S. Nonparametric estimation of an additive quantile regression model. J Amer Statist Assoc, 100: 1238–1249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. De Boor C. A Practical Guilde to Splines. New York: Springer-Verlag, 1978

    Google Scholar 

  26. Harrison D, Rubinfeld D L. Hedonic housing prices and the demand for clean air. J Econom Manag, 5: 81–102 (1978)

    Article  MATH  Google Scholar 

  27. Belsley D A, Kuh E, Welsch R E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. New York: Wiley, 1980

    MATH  Google Scholar 

  28. Opsomer J D, Ruppert D. A fully automated bandwidth selection method for fitting additive models. J Amer Statist Assoc, 93: 605–619 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fan J, Jiang J. Nonparametric inference for additive models. J Amer Statist Assoc, 100: 890–907 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Opsomer J D. Optimal bandwidth selection for fitting an additive model by local polynomial regression. PhD thesis. Ithaca, NY: Cornell University, 1995

    Google Scholar 

  31. Zhou S, Shen X, Wolfe D A. Local asymptotics for regression splines and confidence regions. Ann Statist, 26: 1760–1782 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianTao Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 10471006)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, J., Li, J. Two-stage local M-estimation of additive models. Sci. China Ser. A-Math. 51, 1315–1338 (2008). https://doi.org/10.1007/s11425-007-0173-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-007-0173-6

Keywords

MSC(2000)

Navigation