Skip to main content
Log in

Deep Learning for Real-Time Crime Forecasting and Its Ternarization

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

Real-time crime forecasting is important. However, accurate prediction of when and where the next crime will happen is difficult. No known physical model provides a reasonable approximation to such a complex system. Historical crime data are sparse in both space and time and the signal of interests is weak. In this work, the authors first present a proper representation of crime data. The authors then adapt the spatial temporal residual network on the well represented data to predict the distribution of crime in Los Angeles at the scale of hours in neighborhood-sized parcels. These experiments as well as comparisons with several existing approaches to prediction demonstrate the superiority of the proposed model in terms of accuracy. Finally, the authors present a ternarization technique to address the resource consumption issue for its deployment in real world. This work is an extension of our short conference proceeding paper [Wang, B., Zhang, D., Zhang, D. H., et al., Deep learning for real time Crime forecasting, 2017, arXiv: 1707.03340].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, P., Yuan, H. and Shu, X., Forecasting crime using the arima model, Proceeding of the 5th IEEE International Conference on Fuzzy Systems and Knowledge Discovery, 5, 2008, 627–630.

    Google Scholar 

  2. Chen, X., Cho, Y. and Jang, S., Crime prediction using twitter sentiment and weather, Systems and Information Engineering Design Symposium, 2015, 63–68, DOI:10.1109/SIEDS.2015.7117012.

    Google Scholar 

  3. Chetlur, S., Woolley, C. Vandermersch, P., et al., cuDNN: Efficient primitives for deep learning, 2014, arXiv:1410.0759.

    Google Scholar 

  4. Choillet, F., Keras: Keep learning for humans, 2015, https://doi.org/github.com/fchollet/keras.

    Google Scholar 

  5. Courbariaux, M., Bengio, Y. and David, J., Binaryconnect: Training deep neural networks with binary weights during propagations, Advances in Neural Information Processing Systems, 28, 2015, 3123C3131.

    Google Scholar 

  6. Courbariaux, M., Hubara, I., Soudry, D., et al., Binarized neural networks: Training neural networks with weights and activations constrained to +1 or -1, CoRR, 2016, arXiv: 1602.02830.

    Google Scholar 

  7. Dieleman, S., Schlter, J., Raffel. C., et al., Lasagne: First release., 2015, https://doi.org/lasagne.readthedocs.io/en/latest/.

    Google Scholar 

  8. Gerber, M., Predicting crime using twitter and kernel density estimation, Decision Support System, 61, 2014, 115–125.

    Article  Google Scholar 

  9. He, K. M., Zhang, X. Y., Ren, S. Q. and Sun, J., Deep residual learning for image recognition, CVPR, 2016, 770–778.

    Google Scholar 

  10. Hochreiter, S. and Schmidhuber, J., Long short-term memory, Neural Comput, 9, 1997, 1735–1780.

    Article  Google Scholar 

  11. Holden, D., Komura, T. and Saito, J., Phase-functioned neural networks for character control, ACM Transactions on Graphics, 36, 2017, 13 pages.

    Article  Google Scholar 

  12. Ioffe, S. and Szegedy, C., Batch normalization: Accelerating deep network training by reducing internal covariate shift, 2015, arXiv:1502.03167.

    Google Scholar 

  13. Jain, A., Zamir, A. R., Savarese, S. and Saxena, A., Structural-rnn: Deep learning on spatio-temporal graphs, CVPR, 2016, arXiv:1511.05298.

    Google Scholar 

  14. Kang, H. W. and Kang, H.-B., Prediction of crime occurrence from multi-modal data using deep learning, Phos ONE., 12, 2017, DOI:10.1371/journal.pone.0176244.

    Article  MathSciNet  Google Scholar 

  15. Kingma, D. P. and Ba, J., Adam: A method for stochastic optimization, ICLR, 2015, arXiv:1412,6980.

    Google Scholar 

  16. LeCun, Y., Bengion, Y. and Hinton, C., Deep learning, Nature, 521, 2015, 436–444.

    Article  Google Scholar 

  17. Li, F., Zhang, B. and Liu, B., Ternary weight networks, NIPS Workshop, 2016, https://doi.org/arxiv.org/abs/1605.04711.

    Google Scholar 

  18. Li, H., De, S., Xu, Z., et al., Training quantized nets: A deeper understanding, 2017, arXiv:1706.02379.

    Google Scholar 

  19. Li, Y., Zemel, R., Brockschmidt, M. and Tarlow, D., Gated graph sequence neural network, ICLR, 2016, https://doi.org/arxiv.org/abs/1511.05493.

    Google Scholar 

  20. Mohler, G. O., Short, M. B., Brantingham, P. J., et al., Self-exciting point process modeling of crime, J. Amer. Statist. Assoc, 106(493), 2011, 100–108.

    Article  MathSciNet  Google Scholar 

  21. Mohler, G. O., Short, M. B. and Brantingham, P. J., The concentration dynamics tradeoff in crime hot spotting, Unraveling the Crime-Place Connection: New Directions in Theory and Policy., 22, 2017, 21 pages.

  22. Osher, S., Wang, B., Yin, P., et al., Laplacian smoothing gradient descent, 2018, arXiv:1806.06317.

    Google Scholar 

  23. Rastegari, M., Ordonez, V., Redmon, J. and Farhadi, A., Xnor-net: Imagenet classification using binary convolutional neural networks, EGGV, 2016, arXiv:1603.05279.

    Google Scholar 

  24. Short, M. B., Mohler, G. O., Brantingham, P. J. and Tita, G. E., Gang rivalry dynamics via coupled point process network, Discrete Contin. Dyn. Syst. Ser. B, 19(5), 2014, 1459–1477.

    Article  MathSciNet  Google Scholar 

  25. Short, M. B., Bertozzi, A. L. and Brantingham, P. J., Nonlinear patterns in urban crime: Hotspots, bifurcations, and suppression, SIAM J. Appl. Dyn. Syst., 9(2), 2010, 462–483.

    Article  MathSciNet  Google Scholar 

  26. Short, M. B., Brantingham, P. J., Bertozzi, A. L. and Tita, G. E., Dissipation and displacement of hotspots in reaction-diffusion models of crime, Proc. Nat. Acad. Sci, 107(9), 2010, 3961–3965.

    Article  Google Scholar 

  27. Short, M. B., D'Orsogna, M. R., Pasour, V. B., et al., Persistent heat signature for pose-oblivious matching of incomplete models, M3AS: Mathematical Models and Methods in Applied Sciences, 18, 2008, 1249–1267.

    Google Scholar 

  28. Stomakhin, A., Short, M. B. and Bertozzi, A. L., Reconstruction of missing data in social networks based on temporal patterns of interactions, Inverse Problems, 27(11), 2011, 15 pages.

    Google Scholar 

  29. The Theano Development Team, Theano: A python framework for fas computation of mathematical expressions, 2015, arXiv: 1605.02688.

    Google Scholar 

  30. Wang, B., Zhang, D., Zhang, D. H., et al., Deep Learning for Real Time Crime Forecasting, 2017, arXiv: 1707.03340.

    Google Scholar 

  31. Wang, X., Gerber, M. S. and Brown, D. E., Automatic crime prediction using events extracted from twitter posts, International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction, 2012, 231–238, DOI:10.1007/978-3-642-29047-328.

    Chapter  Google Scholar 

  32. Yin, P., Zhang, S., Xin, J. and Qi, Y., Quantization and Training of Low Bit-Width Convolutional Neural Networks for Object Detection, 2016, arXiv:1612.06052.

    Google Scholar 

  33. Zhang, J. B., Zheng, Y. and Qi, D. R., Deep spatio-temporal residual networks for citywide crowd flows prediction, AAAI, 2017, arXiv:1610.00081.

    Google Scholar 

  34. Zhou, A. J., Yao, A. B., Guo, Y. W., et al., Incremental network quantization: Towards lossless cnns with low-precision weights, ICLR, 2017, arXiv: 1702.03044.

    Google Scholar 

  35. Zhu, C. Z., Han, S., Miao, H. Z. and Dally, W. J., Trained ternary quantization, ICLR, 2017. arX-iv:1612.01064.

    Google Scholar 

Download references

Acknowledgments

The authors thank the Los Angeles Police Department for providing the crime data for this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bao Wang, P. Jeffrey Brantingham or Jack Xin.

Additional information

Dedicated to Professor Andrew J. Majda on the occasion of his 70th birthday

This work was supported by ONR Grants N00014-16-1-2119, N000-14-16-1-2157, NSF Grants DMS-1417674, DMS-1522383, DMS-1737770 and IIS-1632935.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Yin, P., Bertozzi, A.L. et al. Deep Learning for Real-Time Crime Forecasting and Its Ternarization. Chin. Ann. Math. Ser. B 40, 949–966 (2019). https://doi.org/10.1007/s11401-019-0168-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-019-0168-y

Keywords

2000 MR Subject Classification

Navigation