Skip to main content
Log in

On Local Singularities in Ideal Potential Flows with Free Surface

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

Despite important advances in the mathematical analysis of the Euler equations for water waves, especially over the last two decades, it is not yet known whether local singularities can develop from smooth data in well-posed initial value problems. For ideal free-surface flow with zero surface tension and gravity, the authors review existing works that describe “splash singularities”, singular hyperbolic solutions related to jet formation and “flip-through”, and a recent construction of a singular free surface by Zubarev and Karabut that however involves unbounded negative pressure. The authors illustrate some of these phenomena with numerical computations of 2D flow based upon a conformal mapping formulation. Numerical tests with a different kind of initial data suggest the possibility that corner singularities may form in an unstable way from specially prepared initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beale, J., Hou, T. and Lowengrub, J., Growth rates for the linearized motion of fluid interfaces away from equilibrium, Commun. Pur. Appl. Math., 46, 1993, 1269–1301.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bredmose, H., Hunt-Raby, A., Jayaratne, R. and Bullock, G. N., The ideal flip-through impact: Experimental and numerical investigation, J. Engrg. Math., 67, 2010, 115–136.

    Article  MathSciNet  MATH  Google Scholar 

  3. Brenier, Y., Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations, Comm. Pure Appl. Math., 52, 1999, 411–452.

    Article  MathSciNet  MATH  Google Scholar 

  4. Castro, A., Córdoba, D., Fefferman, C. L., et al., Splash singularity for water waves, Proc. Natl. Acad. Sci. USA, 109, 2012, 733–738.

    Article  MathSciNet  MATH  Google Scholar 

  5. Castro, A., Córdoba, D., Fefferman, C. L., et al., Finite time singularities for the free boundary incompressible Euler equations, Ann. of Math. (2), 178, 2013, 1061–1134.

    Article  MathSciNet  MATH  Google Scholar 

  6. Chalikov, D. and Sheinin, D., Numerical modeling of surface waves based on principal equations of potential wave dynamics, Technical Note NOAA/NCEP/OMB, 1996, 54 pages.

    MATH  Google Scholar 

  7. Choi, W. and Camassa, R., Exact evolution equations for surface waves, J. Engr. Mech., 125, 1999, 756–760.

    Article  Google Scholar 

  8. Cooker, M. and Peregrine, D., Computations of violent motion due to waves breaking against a wall, Proc. 22nd Intl. Conf. on Coastal Engineering, ASCE, 1990, 164–176.

    Google Scholar 

  9. Cooker, M. J. and Peregrine, D. H., Violent Motion as Near Breaking Waves Meet a Vertical Wall, Breaking Waves, Springer-Verlag, Berlin, Heidelberg, 1992, 291–297.

    Google Scholar 

  10. Coutand, D. and Shkoller, S., Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., 20, 2007, 829–930.

    Article  MathSciNet  MATH  Google Scholar 

  11. Coutand, D. and Shkoller, S., A simple proof of well-posedness for the free-surface incompressible Euler equations, Discrete Contin. Dyn. Syst. Ser. S, 3, 2010, 429–449.

    MathSciNet  MATH  Google Scholar 

  12. Dirichlet, G. L., Untersuchungen über ein Problem der Hydrodynamik, Abh. Kön. Gest. Wiss. Göttingen (Abh. math.), 8, 1860, 3–42.

    Google Scholar 

  13. Dyachenko, A. I., Zakharov, V. E. and Kuznetsov, E. A., Nonlinear dynamics of the free surface of an ideal fluid, Plasma Phys. Rep., 22, 1996, 829–840.

    Google Scholar 

  14. Dyachenko, S. and Newell, A. C., Whitecapping, Stud. Appl. Math., 137, 2016, 199–213.

    Article  MathSciNet  MATH  Google Scholar 

  15. Dyachenko, S. A., Lushnikov, P. M. and Korotkevich, A. O., Branch cuts of Stokes wave on deep water, Part I: Numerical solution and Pade approximation, Stud. Appl. Math., 137, 2016, 419–472.

    Article  MathSciNet  MATH  Google Scholar 

  16. Hogrefe, J. E., Peffley, N. L., Goodridge, C. L., et al., Power-law singularities in gravity-capillary waves, Phys. D., 123, 1998, 183–205.

    Article  MathSciNet  MATH  Google Scholar 

  17. Hou, T. Y. and Li, R., Computing nearly singular solutions using pseudo-spectral methods, J. Comput. Phys., 226, 2007, 379–397.

    Article  MathSciNet  MATH  Google Scholar 

  18. Hunter, J. K., Ifrim, M. and Tataru, D., Two dimensional water waves in holomorphic coordinates, Comm. Math. Phys., 346, 2016, 483–552.

    Article  MathSciNet  MATH  Google Scholar 

  19. John, F., Two-dimensional potential flows with a free boundary, Comm. Pure Appl. Math., 6, 1953, 497–503.

    Article  MathSciNet  MATH  Google Scholar 

  20. Kano, T. and Nishida, T., Sur les ondes de surface de l'eau avec une justification mathematique des equations des ondes en eau peu profonde, J. Math. Kyoto Univ., 19, 1979, 335–370.

    Article  MathSciNet  MATH  Google Scholar 

  21. Kinsey, R. H. and Wu, S., A priori estimates for two-dimensional water waves with angled crests, Camb. J. Math., 6, 2018, 93–181.

    Google Scholar 

  22. Lamb, H., Hydrodynamics, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 6th ed., with a foreword by R. A. Caflisch (Russel E. Caflisch), 1993.

    Google Scholar 

  23. Lavrenteva, O. M., Motion of a liquid ellipsoid, Dokl. Akad. Nauk SSSR, 253, 1980, 828–831.

    MathSciNet  Google Scholar 

  24. Li, L., Liu, J.-G. and Pego, R. L., Numerical analysis of a conformal mapping formulation for incompressible fluid drops, in preparation.

  25. Lindblad, H., Well-posedness for the motion of an incompressible liquid with free surface boundary, Ann. of Math. (2), 162, 2005, 109–194.

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, J.-G., Pego, R. L. and Slepčev, D., Least action principles for incompressible flows and optimal transport between shapes, 2016, arXiv:1604.03387.

    MATH  Google Scholar 

  27. Longuet-Higgins, M. S., A class of exact, time-dependent, free-surface flows, J. Fluid Mech., 55, 1972, 529–543.

    Article  MATH  Google Scholar 

  28. Longuet-Higgins, M. S., Self-similar, time-dependent flows with a free surface, J. Fluid Mech., 73, 1976, 603–620.

    Article  MathSciNet  MATH  Google Scholar 

  29. Longuet-Higgins, M. S., On the forming of sharp corners at a free surface, Proc. Roy. Soc. London Ser. A, 371, 1980, 453–478.

    Article  MathSciNet  MATH  Google Scholar 

  30. Longuet-Higgins, M. S., Bubbles, breaking waves and hyperbolic jets at a free surface, J. Fluid Mech., 127, 1983, 103–121.

    Article  MathSciNet  MATH  Google Scholar 

  31. Lushnikov, P. M., Dyachenko, S. A. and Silantyev, D. A., New conformal mapping for adaptive resolving of the complex singularities of Stokes wave, Proc. A., 473, 2017, 19 pages.

    Article  MathSciNet  MATH  Google Scholar 

  32. Nalimov, V. I. and Pukhnachev, V. V., Nonstationary motion of a perfect fluid with a free boundary, Unpublished Lecture Notes, Novosibirsk Gos. Univ., Novosibirsk, 1975 (in Russian).

    Google Scholar 

  33. Nehari, Z., Conformal mapping, Dover Publications, Inc., New York, 1975.

    MATH  Google Scholar 

  34. Ovsjannikov, L. V., A class of nonsteady motions of an incompressible fluid, Proceedings of the Fifth Session of the Scientific Council on the Use of Detonation in the National Economy, Ilim, Frunze, 1965, 34–42 (in Russian).

    Google Scholar 

  35. Ovsjannikov, L. V., A plane problem on the unsteady motion of an incompressible fluid with a free boundary, Dinamika Splošn. Sredy, 1971, 22–26.

    Google Scholar 

  36. Peregrine, D. H., Water-wave impact on walls, in Annual review of fluid mechanics, Annu. Rev. Fluid Mech., 35, 2003, 23–43.

    Article  MathSciNet  MATH  Google Scholar 

  37. Taylor, G., The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, I, Proc. Roy. Soc. London. Ser. A., 201, 1950, 192–196.

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, A., Ikeda-Gilbert, C. M., Duncan, J. H., et al., The impact of a deep-water plunging breaker on a wall with its bottom edge close to the mean water surface, J. Fluid Mech., 843, 2018, 680–721.

    Article  MathSciNet  MATH  Google Scholar 

  39. Wu, S., Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math., 130, 1997, 39–72.

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu, S., Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., 12, 1999, 445–495.

    Article  MathSciNet  MATH  Google Scholar 

  41. Wu, S., A blow-up criteria and the existence of 2d gravity water waves with angled crests, 2015, arX-iv:1502.05342.

    Google Scholar 

  42. Zeff, B. W., Kleber, B., Fineberg, J. and Lathrop, D. P., Singularity dynamics in curvature collapse and jet eruption on a fluid surface, Nature, 403, 2000, 401.

    Article  Google Scholar 

  43. Zubarev, N. M. and Karabut, E. A., Exact local solutions for the formation of singularities on the free surface of an ideal fluid, JETP Lett., 107, 2018, 412–417.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Sergey Gavriluk for historical references regarding ellipsoidal solutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Guo Liu or Robert L. Pego.

Additional information

Dedicated to Andrew J. Majda on the occasion of his 70th birthday

This work was supported by the National Science Foundation under NSF Research Network Grant RNMS11-07444 (KI-Net), the NSF Grants DMS-1514826, DMS-1812573, DMS-1515400, DMS-1812609 and the Simons Foundation under Grant 395796.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JG., Pego, R.L. On Local Singularities in Ideal Potential Flows with Free Surface. Chin. Ann. Math. Ser. B 40, 925–948 (2019). https://doi.org/10.1007/s11401-019-0167-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-019-0167-z

Keywords

2000 MR Subject Classification

Navigation