Skip to main content
Log in

Partial and spectral-viscosity models for geophysical flows

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

Two models based on the hydrostatic primitive equations are proposed. The first model is the primitive equations with partial viscosity only, and is oriented towards large-scale wave structures in the ocean and atmosphere. The second model is the viscous primitive equations with spectral eddy viscosity, and is oriented towards turbulent geophysical flows. For both models, the existence and uniqueness of global strong solutions are established. For the second model, the convergence of the solutions to the solutions of the classical primitive equations as eddy viscosity parameters tend to zero is also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York, London, 1975. MR0450957 (56 #9247)

    MATH  Google Scholar 

  2. Avrin, J. and Xiao, C., Convergence of Galerkin solutions and continuous dependence on data in spectrallyhyperviscous models of 3D turbulent flow, J. Diff. Eqs., 247(10), 2009, 2778–2798. MR2568157

    Article  MATH  MathSciNet  Google Scholar 

  3. Berselli, L. C., Iliescu, T. and Layton, W. J., Mathematics of Large Eddy Simulation of Turbulent Flows, Scientific Computation, Springer-Verlag, Berlin, 2006. MR2185509 (2006h:76071)

    Google Scholar 

  4. Calhoun-Lopez, M. and Gunzburger, M. D., A finite element, multiresolution viscosity method for hyperbolic conservation laws (electronic), SIAM J. Numer. Anal., 43(5), 2005, 1988–2011. MR2192328 (2007b:35223)

    Article  MATH  MathSciNet  Google Scholar 

  5. Calhoun-Lopez, M. and Gunzburger, M. D., The efficient implementation of a finite element, multi-resolution viscosity method for hyperbolic conservation laws, J. Comput. Phys., 225(2), 2007, 1288–1313. MR2349182 (2008j:65157)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cao, C. S. and Titi, E. S., Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model, Comm. Pure Appl. Math., 56(2), 2003, 198–233. MR1934620 (2003k:37129)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cao, C. S. and Titi, E. S., Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math. (2), 166(1), 2007, 245–267. MR2342696

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, Q., Laminie, J., Rousseau, A., et al, A 2.5D model for the equations of the ocean and the atmosphere, Anal. Appl. (Singapore), 5(3), 2007, 199–229. MR2340646 (2008h:35281)

    Article  MATH  MathSciNet  Google Scholar 

  9. Constantin, P. and Foias, C. Navier-Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. MR972259 (90b:35190)

    Google Scholar 

  10. Díez, D. C., Gunzburger, M. and Kunoth, A., An adaptive wavelet viscosity method for hyperbolic conservation laws, Numer. Meth. Part. Diff. Eqs., 24(6), 2008, 1388–1404. MR2453940 (2009j:65242)

    Article  MATH  Google Scholar 

  11. Frederiksen, J. S., Dix, M. R. and Kepert, S. M., Systematic energy errors and the tendency toward canonical equilibrium in atmospheric circulation models, J. Atmosph. Sci., 53(6), 1996, 887–904.

    Article  Google Scholar 

  12. Gill, A. E., Atmosphere-Ocean Dynamics, Academic Press, New York, 1982.

    Google Scholar 

  13. Guermond, J.-L. and Prudhomme, S., Mathematical analysis of a spectral hyperviscosity LES model for the simulation of turbulent flows, M2AN Math. Model. Numer. Anal., 37(6), 2003, 893–908. MR2026401 (2004j:65150)

    Article  MATH  MathSciNet  Google Scholar 

  14. Guillén-González, F., Masmoudi, N. and Rodríguez-Bellido, M. A., Anisotropic estimates and strong solutions of the primitive equations, Diff. Int. Eqs., 14(11), 2001, 1381–1408. MR1859612 (2003b:76038)

    MATH  Google Scholar 

  15. Gunzburger, M., Lee, E. Saka, Y., et al, Analysis of nonlinear spectral eddy-viscosity models of turbulence, J. Sci. Comput., to appear. DOI: 10.1007/s10915-009-9335-8

  16. Hardy, G. H., Littlewood, J. E. and Pólya, G., Inequalities, reprint of the 1952 edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988. MR944909 (89d:26016)

  17. Hu, C. B., Temam, R. and Ziane, M., The primitive equations on the large scale ocean under the small depth hypothesis, Discrete Contin. Dyn. Syst., 9(1), 2003, 97–131. MR1951315 (2003i:86003)

    MATH  MathSciNet  Google Scholar 

  18. Ju, N., The global attractor for the solutions to the 3D viscous primitive equations, Discrete Contin. Dyn. Syst., 17(1), 2007, 159–179. MR2257424 (2008f:37177)

    Article  MATH  MathSciNet  Google Scholar 

  19. Karamanos, G.-S. and Karniadakis, G. E., A spectral vanishing viscosity method for large-eddy simulations, J. Comput. Phys., 163(1), 2000, 22–50. MR1777720 (2001d:76069)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kobelkov, G. M., Existence of a solution “in the large” for ocean dynamics equations, J. Math. Fluid Mech., 9(4), 2007, 588–610. MR2374160

    Article  MATH  MathSciNet  Google Scholar 

  21. Kukavica, I. and Ziane, M., On the regularity of the primitive equations of the ocean, Nonlinearity, 20(12), 2007, 2739–2753. MR2368323 (2008k:35379)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lions, J. L., Temam, R. and Wang, S. H., New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 5(2), 1992, 237–288. MR93e:35088

    Article  MATH  MathSciNet  Google Scholar 

  23. Lions, J. L., Temam, R. and Wang, S. H., On the equations of the large-scale ocean, Nonlinearity, 5(5), 1992, 1007–1053. MR93k:86004

    Article  MATH  MathSciNet  Google Scholar 

  24. Majda, A. J. and Wang, X. M., Non-linear Dynamics and Statistical Theories for Basic Geophysical Flows, Cambridge University Press, Cambridge, 2006. MR2241372 (2009e:76214)

    Book  Google Scholar 

  25. Mcwilliams, J. C., The emergence of isolated coherent vortices in turbulent flow, J. Fluid Mechanics Digital Archive, 146(1), 1984, 21–43.

    MATH  Google Scholar 

  26. Haim Nessyahu and Eitan Tadmor, The convergence rate of approximate solutions for nonlinear scalar conservation laws, SIAM J. Numer. Anal., 29(6), 1992, 1505–1519. MR1191133 (93j:65139)

    Article  MATH  MathSciNet  Google Scholar 

  27. Pedlosky, J., Geophysical Fluid Dynamics, 2nd ed., Springer-Verlag, New York, 1987.

    MATH  Google Scholar 

  28. Petcu, M., Temam, R. and Ziane, M., Mathematical problems for the primitive equations with viscosity, Handbook of Numerical Analysis, Special Issue on Some Mathematical Problems in Geophysical Fluid Dynamics, R. Temam, P. G. Ciarlet and J. Tribbia (eds.), Handb. Numer. Anal., Elsevier, New York, 2008.

    Google Scholar 

  29. Rousseau, A., Temam, R. and Tribbia, J., Boundary conditions for an ocean related system with a small parameter, Nonlinear PDEs and Related Analysis, Vol. 371, G. Q. Chen, G. Gasper and J. J. Jerome (eds.), Contemporary Mathematics, A. M. S., Providence, RI, 2005, 231–263.

    Google Scholar 

  30. Rousseau, A., Temam, R. and Tribbia, J., The 3D primitive equations in the absence of viscosity: boundary conditions and well-posedness in the linearized case, J. Math. Pures Appl. (9), 89(3), 2008, 297–319. MR2401691

    MATH  MathSciNet  Google Scholar 

  31. Smagorinsky, J., General circulation experiments with the primitive equations. I. the basic experiment, Monthly Weather Review, 91, 1963, 99–152.

    Article  Google Scholar 

  32. Stolz, S., Schlatter, P. and Kleiser, L., High-pass filtered eddy-viscosity models for large-eddy simulations of transitional and turbulent flow, Physics of Fluids, 17(6), 2005, 065103.

    Article  Google Scholar 

  33. Temam, R., Navier-Stokes Equations, Theory and Numerical Analysis, reprint of the 1984 edition, A. M. S., Providence, RI, 2001. MR1846644 (2002j:76001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingshan Chen.

Additional information

Dedicated to Professor Roger Temam on the Occasion of his 70th Birthday

The first and second authors supported by the US Department of Energy grant (No. DE-SC0002624) as part of the “Climate Modeling: Simulating Climate at Regional Scale” program, and the third author supported by the National Science Foundation (No. DMS0606671, DMS1008852).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Q., Gunzburger, M. & Wang, X. Partial and spectral-viscosity models for geophysical flows. Chin. Ann. Math. Ser. B 31, 579–606 (2010). https://doi.org/10.1007/s11401-010-0607-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-010-0607-2

Keywords

2000 MR Subject Classification

Navigation