Skip to main content
Log in

Characterization factors for zinc terrestrial ecotoxicity including speciation

  • LCIA OF IMPACTS ON HUMAN HEALTH AND ECOSYSTEMS
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Ignoring metal speciation in the determination of characterization factors (CFs) in life cycle assessment (LCA) could significantly alter the validity of LCA results since toxicity is directly linked to bioavailability.

Methods

Zinc terrestrial ecotoxicity CFs are obtained using modified USEtox fate factors, WHAM 6.0-derived bioavailable factors, and effect factors calculated using the assessment of mean impact (AMI) method with available terrestrial ecotoxicity data. Soil archetypes created using influent soil properties on Zn speciation (soil texture, pH, cation exchange capacity, organic matter and carbonate contents) are used to group soils of the world into a more manageable spatial resolution for LCA. An aggregated global CF value is obtained using population density as a Zn emission proxy. Results are presented in a world map to facilitate use.

Results and discussion

When using soluble Zn as the bioavailable fraction, CF values vary over 1.76 orders of magnitude, indicating that a single aggregated value could reasonably be used for the world. When using true solution Zn, CFs cover 14 orders of magnitude. To represent this variability, 518 archetypes and 13 groups of archetypes were created. Aggregated global default values are 4.58 potentially affected fraction of species (PAF) m3·day kg−1 for soluble Zn and 1.45 PAF m3·day kg−1 for true solution Zn. These values are respectively 28 and 88 times lower than the Zn terrestrial CF in IMPACT 2002 (128 PAF m3·day kg−1).

Conclusions

The CFs obtained for Zn, except for soluble Zn, are at least 2 orders of magnitude lower than current CFs. However, they must be tested in case studies to measure the impact of including Zn speciation in the CF definition of terrestrial ecotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An J, Jeong S, Moon HS, Jho EH, Nam K (2012) Prediction of Cd and Pb toxicity to Vibrio fischeri using biotic ligand-based models in soil. J Hazard Mater 203–204:69–76

    Article  Google Scholar 

  • Bertling S, Wallinder IO, Leygraf C, Kleja DB (2006) Occurrence and fate of corrosion-induced zinc in runoff water from external structures. Sci Total Environ 367:908–923

    Article  CAS  Google Scholar 

  • Brennan RF (2005) Zinc Application and Its Availability to Plants. Murdoch University

  • Campbell PGC, Errécalde O, Fortin C, Hiriart-Baer VP, Vigneault B (2002) Metal bioavailability to phytoplankton-applicability of the biotic ligand model. Comp Biochem Physiol Part C 133:189–206

    Google Scholar 

  • Christiansen KS, Holm PE, Borggaard OK, Hauschild MZ (2011) Addressing speciation in the effect factor for characterisation of freshwater ecotoxicity - the case of copper. Int J Life Cycle Assess 16:761–773

  • CIESIN-Columbia-University-FAO-CIAT (2005) Gridded Population of the World: Future Estimates (GPWFE). Socioeconomic Data and Applications Center (SEDAC), Columbia University, Palisades, NY

  • CITEPA (2014) Zinc-Zn. Centre Interprofessionnel Technique d'Études de la Pollution Atmosphérique. http://www.citepa.org/fr/pollution-et-climat/polluants/metaux-lourds/zinc. Accessed 2014-09-19

  • de Schamphelaere KAC, Janssen CR (2002) A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH. Environ Sci Technol 36:48–54

    Article  Google Scholar 

  • Diamond ML et al (2010) The clearwater consensus: the estimation of metal hazard in freshwater. Int J Life Cycle Assess 15:143–147

    Article  CAS  Google Scholar 

  • Dong Y, Gandhi N, Hauschild MZ (2014) Development of comparative toxicity potentials of 14 cationic metals in freshwater. Chemosphere 112:26–33

    Article  CAS  Google Scholar 

  • EPA (2011) Common Contaminants - Fact Flash - Zinc. EPA. http://www.epa.gov/superfund/students/clas_act/haz-ed/ff_09.htm. Accessed 2014-09-19

  • FAO/IIASA/ISRIC/ISS-CAS/JRC (2009) Harmonized World Soil Database (version 1.1). FAO, Rome, Italy and IIASA, Laxenburg, Austria

  • Gandhi N, Diamond M, van de meent D, Huijbregts MAJ, Peijnenburg WJGM, Guinée J (2010) New method for calculating comparative toxicity potential of cationic metals in freshwater: application to copper, nickel, and zinc. Environ Sci Technol 44:5195–5201

    Article  CAS  Google Scholar 

  • Gandhi N, Diamond ML, Huijbregts MAJ, Guinée JB, Peijnenburg WJGM, van de Meent D (2011) Implications of considering metal bioavailability in estimates of freshwater ecotoxicity: examination of two case studies. Int J Life Cycle Assess 16:774–787

    Article  CAS  Google Scholar 

  • Gerberding JL (2005) Toxicological Profile for Zinc. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry

  • Groenenberg JE, Dijkstra JJ, Bonten LTC, De vries W, Comans RNJ (2012) Evaluation of the performance and limitations of empirical partition-relations and process based multisurface models to predict trace element solubility in soils. Environ Pollut 166:98–107

    Article  CAS  Google Scholar 

  • Hauschild M (2007) International consensus model for comparative assessment of chemiclas. SETAC Europe Annual Meeting 2007

  • Hauschild MZ et al (2013) Identifying best existing practice for characterization modeling in life cycle impact assessment. Int J Life Cycle Assess 18:683–697

    Article  CAS  Google Scholar 

  • Hauschild MZ, McKone TE, van de meent D, Huijbregts M, Margni M, Rosenbaum RK, Jolliet O (2010) USEtoxTM 1.01 - UNEP/SETAC model for the comparative assessment of chemicals released to air, water and soil and their toxic effects on the human population and ecosystems. UNEP/SETAC

  • Haye S, Slaveykova VI, Payet J (2007) Terrestrial ecotoxicity and effect factors of metals in life cycle assessment (LCA). Chemosphere 68:1489–1496

    Article  CAS  Google Scholar 

  • Huijbregts M, Hauschild M, Jolliet O, Margni M, McKone T, Rosenbaum RK, van de meent D (2010) USEtox User manual. USEtox Team

  • Humbert S, Margni M, Jolliet O (2005) IMPACT 2002+: User Guide - Draft for version 2.1. École Polytechnique Fédérale de Lausanne

  • IREP (2012) Exploitation des résultats réalisés à partir des déclarations 2012 des émissions industrielles - Zinc et ses composés (Zn). Registre Français des Émissions Polluantes. IREP-INERIS, France

  • JRC-IHCP (2008) European Union Risk Assessment Report - Zinc Metal. European Commission Joint Research Centre Institute for Health and Consumer Protection

  • Koster M, de Groot A, Vijver M, Peijnenburg W (2006) Copper in the terrestrial environment: verification of a laboratory-derived terrestrial biotic ligand model to predict earthworm mortality with toxicity observed in field soils. Soil Biol Biochem 38:1788–1796

    Article  CAS  Google Scholar 

  • Larsen HF, Hauschild M (2007a) Evaluation of ecotoxicity effect indicators for use in LCIA. Int J Life Cycle Assess 12:24–33,24

    Article  CAS  Google Scholar 

  • Larsen HF, Hauschild M (2007b) GM-Troph a low data demand ecotoxicity effect indicator for use in LCIA. Int J Life Cycle Assess 12:79–91

    Article  CAS  Google Scholar 

  • Lautier A, Rosenbaum RK, Margni M, Bare J, Roy P-O, Deschênes L (2010) Development of normalization factors for Canada and the United States and comparison with European factors. Sci Total Environ 409:33–42

    Article  CAS  Google Scholar 

  • Lessard I (2013) Détermination de la toxicité à long-terme du zinc sur la diversité fonctionnelle enzymatique de sols contaminés collectés sur le terrain. Université de Montréal

  • Leveque T et al (2013) Assessing ecotoxicity and uptake of metals and metalloids in relation to two different earthworm species (Eisenia hortensis and Lumbricus terrestris). Environ Pollut 179:232–241

    Article  CAS  Google Scholar 

  • Ligthart T et al. Declaration of Apeldoorn on LCIA of Non-Ferro Metals. In: Workshop organised by TNO and CML, Apeldoorn, Netherlands, April 15th, 2004 2004. pp 1–2

  • Ligthart TN, Jongbloed RH, Tamis JE (2010) A method for improving Centre for Environmental Studies (CML) characterisation factors for metal (eco)toxicity—the case of zinc gutters and downpipes. Int J Life Cycle Assess 15:745–756

    Article  CAS  Google Scholar 

  • Lock K, de Schamphelaere KAC, Becaus S, Criel P, van Eeckhout H, Janssen CR (2007) Development and validation of a terrestrial biotic ligand model predicting the effect of cobalt on root growth of barley (Hordeum vulgare). Environ Pollut 147:626–633

    Article  CAS  Google Scholar 

  • Lofts S et al (2013) Modelling the effects of copper on soil organisms and processes using the free ion approach: towards a multi-species toxicity model. Environ Pollut 178:244–253

    Article  CAS  Google Scholar 

  • Niyogi S, Wood CM (2004) Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ Sci Technol 38:6177–6192

    Article  CAS  Google Scholar 

  • Owsianiak M, Rosenbaum RK, Huijbregts MAJ, Hauschild MZ (2013) Addressing geographic variability in the comparative toxicity potential of copper and nickel in soils. Environ Sci Technol 47:3241–3250

    Article  CAS  Google Scholar 

  • Payet J (2004) Assessing Toxic Impacts on Aquatic Ecosystems in Life Cycle Assessment. École Polytechnique Fédérale de Lausanne

  • Pennington DW, Margni M, Payet J, Jolliet O (2006) Risk and regulatory hazard-based toxicological effect indicators in life-cycle assessment (LCA). Hum Ecol Risk Assess 12:450–475

    Article  CAS  Google Scholar 

  • Pennington DW, Payet J, Hauschild M (2004) Aquatic ecotoxicological indicators in life-cycle assessment. Environ Toxicol Chem 23:1796–1807

    Article  CAS  Google Scholar 

  • Pizzol M, Christensen P, Schmidt J, Thomsen M (2011) Eco-toxicological impact of “metals” on the aquatic and terrestrial ecosystem: a comparison between eight different methodologies for Life Cycle Impact Assessment (LCIA). J Clean Prod 19:687–698

    Article  CAS  Google Scholar 

  • Plouffe G, Bulle C, Deschênes L (2015) Assessing the variability of the bioavailable fraction of zinc at the global scale using geochemical modeling and soil archetypes. Int J Life Cycle Assess 20:527–540

    Article  CAS  Google Scholar 

  • Rosenbaum RK et al (2008) USEtox-the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546

    Article  CAS  Google Scholar 

  • Sauvé S (2002) Speciation of metals in soils. In: Allen HE (ed) Bioavailability of metals in terrestrial ecosystems: importance of partitioning for bioavailability to invertebrates. Microbes and Plants. Metals and the Environment. SETAC, Pensacola, USA, pp 7–37

    Google Scholar 

  • Thakali S (2006) Terrestrial biotic ligand model (TBLM) for copper, and nickel toxicities to plants, invertebrates, and microbes in soils. University of Delaware

  • Thakali S, Allen HE, DM D t, Ponizovsky AA, Rooney CP, Zhao F-J, McGrath SP (2006a) A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils. Environ Sci Technol 40:7085–7093

    Article  CAS  Google Scholar 

  • Thakali S et al (2006b) Terrestrial biotic ligand model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil. Environ Sci Technol 40:7094–7100

    Article  CAS  Google Scholar 

  • USEtoxTEAM (2004) Extrapolated EC50 data and QSARs in calculation of new CFs and interpretation of trophic levels. USEtox. http://www.usetox.org/forums/other-questions/extrapolated-ec50-data-and-qsars-calculation-new-cfs-and-interpretation. Accessed 2014-09-19

  • Wang X, Li B, Ma Y, Hua L (2010) Development of a biotic ligand model for acute zinc toxicity to barley root elongation. Ecotox Environ Safe 73:1272–1278

    Article  CAS  Google Scholar 

  • Wu F, Mu Y, Chang H, Zhao X, Giesy J, Wu KB (2013) Predicting water quality criteria for protecting aquatic life from physicochemical properties of metals or metalloids. Environ Sci Techol 47:446–453

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Pierre-Olivier Roy for his help with ARC-GIS. The International Life Cycle Chair (a research unit of the CIRAIG) would like to thank its industrial partners for their financial support: ArcelorMittal, Bombardier, Mouvement des caisses Desjardins, Hydro-Québec, LVMH, Michelin, Nestlé, RECYC-QUÉBEC, SAQ, Solvay, Total, Umicore, and Veolia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève Plouffe.

Additional information

Responsible editor: Serenella Sala

Electronic supplementary material

Details on ecotoxicological data and archetype definition as well as a table of all CF values per archetype and group are included in the supporting information.

ESM 1

(DOCX 534 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plouffe, G., Bulle, C. & Deschênes, L. Characterization factors for zinc terrestrial ecotoxicity including speciation. Int J Life Cycle Assess 21, 523–535 (2016). https://doi.org/10.1007/s11367-016-1037-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-016-1037-5

Keywords

Navigation