Skip to main content

Advertisement

Log in

The renin–angiotensin system and prevention of age-related functional decline: where are we now?

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Declining physical function is a major health problem for older adults as it is associated with multiple comorbidities and mortality. Exercise has been shown to improve physical function, though response to exercise is variable. Conversely, drugs targeting the renin–angiotensin system (RAS) pathway, including angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARBs), are also reported to improve physical function. In the past decade, significant strides have been made to understand the complexity and specificity of the RAS system as it pertains to physical function in older adults. Prior findings have also determined that interactions between antihypertensive medications and exercise may influence physical function above and beyond either factor alone. We review the latest research on RAS, exercise, and physical function for older adults. We also outline future research aims in this area, including genetic influences and clinical phenotyping, for the purpose of maintaining or improving physical function through tailored treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abadir PM (2011) The frail renin-angiotensin system. Clin Geriatr Med 27:53–65. doi:10.1016/j.cger.2010.08.004

    Article  PubMed Central  PubMed  Google Scholar 

  • Abadir PM, Walston JD, Carey RM (2012) Subcellular characteristics of functional intracellular renin-angiotensin systems. Peptides 38:437–445. doi:10.1016/j.peptides.2012.09.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Afilalo J, Eisenberg MJ, Morin J-F et al (2010) Gait speed as an incremental predictor of mortality and major morbidity in elderly patients undergoing cardiac surgery. J Am Coll Cardiol 56:1668–1676. doi:10.1016/j.jacc.2010.06.039

    Article  PubMed  Google Scholar 

  • Arnold AC, Sakima A, Ganten D et al (2008) Modulation of reflex function by endogenous angiotensins in older transgenic rats with low glial angiotensinogen. Hypertension 51:1326–1331. doi:10.1161/HYPERTENSIONAHA.107.106005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arnold AC, Gallagher PE, Diz DI (2013) Brain renin-angiotensin system in the nexus of hypertension and aging. Hypertens Res Off J Jpn Soc Hypertens 36:5–13. doi:10.1038/hr.2012.161

    Article  CAS  Google Scholar 

  • Bader M, Ganten D (2008) Update on tissue renin–angiotensin systems. J Mol Med 86:615–621. doi:10.1007/s00109-008-0336-0

    Article  CAS  PubMed  Google Scholar 

  • Bahi L, Koulmann N, Sanchez H et al (2004) Does ACE inhibition enhance endurance performance and muscle energy metabolism in rats? J Appl Physiol Bethesda MD 1985 96:59–64. doi:10.1152/japplphysiol.00323.2003

    CAS  Google Scholar 

  • Balcells E, Meng QC, Johnson WH et al (1997) Angiotensin II formation from ACE and chymase in human and animal hearts: methods and species considerations. Am J Physiol 273:H1769–1774

    CAS  PubMed  Google Scholar 

  • Bauters C, Amouyel P (1998) Association between the ACE genotype and coronary artery disease. Insights from studies on restenosis, vasomotion and thrombosis. Eur Heart J 19 Suppl J:J24–29

  • Bellamy LM, Johnston APW, De Lisio M, Parise G (2010) Skeletal muscle-endothelial cell cross talk through angiotensin II. Am J Physiol Cell Physiol 299:C1402–1408. doi:10.1152/ajpcell.00306.2010

    Article  CAS  PubMed  Google Scholar 

  • Brown M, Sinacore DR, Ehsani AA et al (2000) Low-intensity exercise as a modifier of physical frailty in older adults. Arch Phys Med Rehabil 81:960–965. doi:10.1053/apmr.2000.4425

    Article  CAS  PubMed  Google Scholar 

  • Brugts JJ, Ferrari R, Simoons ML (2009) Angiotensin-converting enzyme inhibition by perindopril in the treatment of cardiovascular disease. Expert Rev Cardiovasc Ther 7:345–360. doi:10.1586/erc.09.2

    Article  CAS  PubMed  Google Scholar 

  • Buford TW, Hsu FC, Brinkley TE, Carter CS, Church TS, Dodson JA, Goodpaster BH, McDermott MM, Nicklas BJ, Yank V, Johnson JA, Pahor M, LIFE Research Group (2014) Genetic influence on exercise-induced changes in physical function among mobility-limited older adults. Physiol Genomics 46(5):149–158

  • Buford TW, Manini TM, Hsu F-C et al (2012) Angiotensin-converting enzyme inhibitor use by older adults is associated with greater functional responses to exercise. J Am Geriatr Soc 60:1244–1252. doi:10.1111/j.1532-5415.2012.04045.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Burnier M (2001) Angiotensin II type 1 receptor blockers. Circulation 103:904–912

    Article  CAS  PubMed  Google Scholar 

  • Carter CS, Giovannini S, Seo DO, DuPree J, Morgan D, Chung HY, Lees H, Daniels M, Hubbard GB, Lee S, Ikeno Y, Foster TC, Buford TW, Marzetti E (2011) Differential effects of enalapril and losartan on body composition and indices of muscle quality in aged male Fischer 344 x Brown Norway rats. AGE 33(2):167–183

  • Carter CS, Onder G, Kritchevsky SB, Pahor M (2005) Angiotensin-converting enzyme inhibition intervention in elderly persons: effects on body composition and physical performance. J Gerontol A Biol Sci Med Sci 60:1437–1446

    Article  PubMed  Google Scholar 

  • Carter CS, Marzetti E, Leeuwenburgh C et al (2012) Usefulness of preclinical models for assessing the efficacy of late-life interventions for sarcopenia. J Gerontol A Biol Sci Med Sci 67A:17–27. doi:10.1093/gerona/glr042

    Article  PubMed Central  Google Scholar 

  • Cernes R, Mashavi M, Zimlichman R (2011) Differential clinical profile of candesartan compared to other angiotensin receptor blockers. Vasc Health Risk Manag 7:749–759. doi:10.2147/VHRM.S22591

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cesari M, Pedone C, Incalzi RA, Pahor M (2010) ACE-inhibition and physical function: results from the Trial of Angiotensin-Converting Enzyme Inhibition and Novel Cardiovascular Risk Factors (TRAIN) study. J Am Med Dir Assoc 11:26–32. doi:10.1016/j.jamda.2009.09.014

    Article  PubMed Central  PubMed  Google Scholar 

  • Coirault C, Langeron O, Lambert F et al (1999) Impaired skeletal muscle performance in the early stage of cardiac pressure overload in rabbits: beneficial effects of angiotensin-converting enzyme inhibition. J Pharmacol Exp Ther 291:70–75

    CAS  PubMed  Google Scholar 

  • Cress ME, Buchner DM, Questad KA et al (1999) Exercise: effects on physical functional performance in independent older adults. J Gerontol A Biol Sci Med Sci 54:M242–248

    Article  CAS  PubMed  Google Scholar 

  • Cushman DW, Wang FL, Fung WC et al (1989) Differentiation of angiotensin-converting enzyme (ACE) inhibitors by their selective inhibition of ACE in physiologically important target organs. Am J Hypertens 2:294–306. doi:10.1093/ajh/2.4.294

    CAS  PubMed  Google Scholar 

  • Defoor J, Vanhees L, Martens K et al (2006) The CAREGENE study: ACE gene I/D polymorphism and effect of physical training on aerobic power in coronary artery disease. Heart Br Card Soc 92:527–528. doi:10.1136/hrt.2004.054312

    Article  CAS  Google Scholar 

  • De Gasparo M, Catt KJ, Inagami T et al (2000) International union of pharmacology: XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472

    PubMed  Google Scholar 

  • Dengel DR, Brown MD, Ferrell RE et al (2002) Exercise-induced changes in insulin action are associated with ACE gene polymorphisms in older adults. Physiol Genomics 11:73–80. doi:10.1152/physiolgenomics.00048.2002

    Article  CAS  PubMed  Google Scholar 

  • Di Bari M, van de Poll-Franse LV, Onder G et al (2004) Antihypertensive medications and differences in muscle mass in older persons: the Health, Aging and Body Composition Study. J Am Geriatr Soc 52:961–966. doi:10.1111/j.1532-5415.2004.52265.x

    Article  PubMed  Google Scholar 

  • Domenighetti AA, Wang Q, Egger M et al (2005) Angiotensin II-mediated phenotypic cardiomyocyte remodeling leads to age-dependent cardiac dysfunction and failure. Hypertension 46:426–432. doi:10.1161/01.HYP.0000173069.53699.d9

    Article  CAS  PubMed  Google Scholar 

  • Donoghue M, Hsieh F, Baronas E et al (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 87:e1–e9. doi:10.1161/01.RES.87.5.e1

    Article  CAS  PubMed  Google Scholar 

  • Dore A, Houde C, Chan K-L et al (2005) Angiotensin receptor blockade and exercise capacity in adults with systemic right ventricles: a multicenter, randomized, placebo-controlled clinical trial. Circulation 112:2411–2416. doi:10.1161/CIRCULATIONAHA.105.543470

    Article  CAS  PubMed  Google Scholar 

  • Dumurgier J, Elbaz A, Ducimetière P et al (2009) Slow walking speed and cardiovascular death in well functioning older adults: prospective cohort study. BMJ 339:b4460

    Article  PubMed Central  PubMed  Google Scholar 

  • Feng X, Luo Z, Ma L et al (2011) Angiotensin II receptor blocker telmisartan enhances running endurance of skeletal muscle through activation of the PPAR-δ/AMPK pathway. J Cell Mol Med 15:1572–1581. doi:10.1111/j.1582-4934.2010.01085.x

    Article  CAS  PubMed  Google Scholar 

  • Gerdts E, Björnstad H, Devereux RB et al (2006) Exercise performance during losartan- or atenolol-based treatment in hypertensive patients with electrocardiographic left ventricular hypertrophy (a LIFE substudy). Blood Press 15:220–226. doi:10.1080/08037050600911957

    Article  CAS  PubMed  Google Scholar 

  • Giaccaglia V, Nicklas B, Kritchevsky S et al (2008) Interaction between angiotensin converting enzyme insertion/deletion genotype and exercise training on knee extensor strength in older individuals. Int J Sports Med 29:40–44. doi:10.1055/s-2007-964842

    Article  CAS  PubMed  Google Scholar 

  • Gilliam-Davis S, Payne VS, Kasper SO et al (2007) Long-term AT1 receptor blockade improves metabolic function and provides renoprotection in Fischer-344 rats. Am J Physiol Heart Circ Physiol 293:H1327–1333. doi:10.1152/ajpheart.00457.2007

    Article  CAS  PubMed  Google Scholar 

  • Giovannini S, Cesari M, Marzetti E et al (2010) Effects of ACE-inhibition on IGF-1 and IGFBP-3 concentrations in older adults with high cardiovascular risk profile. J Nutr Health Aging 14:457–460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gray SL, LaCroix AZ, Aragaki AK et al (2009) Angiotensin-converting enzyme inhibitor use and incident frailty in women aged 65 and older: prospective findings from the Women’s Health Initiative Observational Study. J Am Geriatr Soc 57:297–303. doi:10.1111/j.1532-5415.2008.02121.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Grothusen A, Divchev D, Luchtefeld M, Schieffer B (2009) Angiotensin II type 1 receptor blockade: high hopes sent back to reality? Minerva Cardioangiol 57:773–785

    CAS  PubMed  Google Scholar 

  • Guo Q, Minami N, Mori N et al (2010) Effects of estradiol, angiotensin-converting enzyme inhibitor and exercise training on exercise capacity and skeletal muscle in old female rats. Clin Exp Hypertens N Y N 1993 32:76–83. doi:10.3109/10641960902993046

    CAS  Google Scholar 

  • Habouzit E, Richard H, Sanchez H et al (2009) Decreased muscle ACE activity enhances functional response to endurance training in rats, without change in muscle oxidative capacity or contractile phenotype. J Appl Physiol Bethesda MD 1985 107:346–353. doi:10.1152/japplphysiol.91443.2008

    CAS  Google Scholar 

  • Hamroff G, Katz SD, Mancini D et al (1999) Addition of angiotensin II receptor blockade to maximal angiotensin-converting enzyme inhibition improves exercise capacity in patients with severe congestive heart failure. Circulation 99:990–992

    Article  CAS  PubMed  Google Scholar 

  • Heled Y, Moran DS, Mendel L et al (2004) Human ACE I/D polymorphism is associated with individual differences in exercise heat tolerance. J Appl Physiol 97:72–76. doi:10.1152/japplphysiol.01087.2003

    Article  CAS  PubMed  Google Scholar 

  • Henriksen EJ, Jacob S (2003) Modulation of metabolic control by angiotensin converting enzyme (ACE) inhibition. J Cell Physiol 196:171–179. doi:10.1002/jcp.10294

    Article  CAS  PubMed  Google Scholar 

  • Ismail H, Mitchell R, McFarlane SI, Makaryus AN (2010) Pleiotropic effects of inhibitors of the RAAS in the diabetic population: above and beyond blood pressure lowering. Curr Diab Rep 10:32–36. doi:10.1007/s11892-009-0081-y

    Article  CAS  PubMed  Google Scholar 

  • Johnston APW, Baker J, Bellamy LM et al (2010) Regulation of muscle satellite cell activation and chemotaxis by angiotensin II. PLoS One 5:e15212. doi:10.1371/journal.pone.0015212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnston APW, Bellamy LM, Lisio MD, Parise G (2011) Captopril treatment induces hyperplasia but inhibits myonuclear accretion following severe myotrauma in murine skeletal muscle. Am J Physiol Regul Integr Comp Physiol 301:R363–369. doi:10.1152/ajpregu.00766.2010

    Article  CAS  PubMed  Google Scholar 

  • Jones A, Woods DR (2003) Skeletal muscle RAS and exercise performance. Int J Biochem Cell Biol 35:855–866. doi:10.1016/S1357-2725(02)00342-4

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa M, Kawamura T, Li L et al (2006) Combination of exercise and enalapril enhances renoprotective and peripheral effects in rats with renal ablation. Am J Hypertens 19:80–86. doi:10.1016/j.amjhyper.2005.07.009

    Article  CAS  PubMed  Google Scholar 

  • Kasper SO, Carter CS, Ferrario CM et al (2005) Growth, metabolism, and blood pressure disturbances during aging in transgenic rats with altered brain renin-angiotensin systems. Physiol Genomics 23:311–317. doi:10.1152/physiolgenomics.00163.2005

    Article  CAS  PubMed  Google Scholar 

  • Kasper SO, Ferrario CM, Ganten D, Diz DI (2006) Rats with low brain angiotensinogen do not exhibit insulin resistance during early aging. Endocrine 30:167–174. doi:10.1385/ENDO:30:2:167

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Onishi K, Yamanaka T et al (2008) Exaggerated hypertensive response to exercise in patients with diastolic heart failure. Hypertens Res Off J Jpn Soc Hypertens 31:679–684. doi:10.1291/hypres.31.679

    Article  Google Scholar 

  • Katovich MJ, Grobe JL, Raizada MK (2008) Angiotensin-(1-7) as an antihypertensive, antifibrotic target. Curr Hypertens Rep 10:227–232

    Article  CAS  PubMed  Google Scholar 

  • Kritchevsky SB, Nicklas BJ, Visser M et al (2005) Angiotensin-converting enzyme insertion/deletion genotype, exercise, and physical decline. JAMA J Am Med Assoc 294:691–698. doi:10.1001/jama.294.6.691

    Article  CAS  Google Scholar 

  • Krysiak R, Okopień B (2008) Pleiotropic effects of angiotensin-converting enzyme inhibitors in normotensive patients with coronary artery disease. Pharmacol Rep PR 60:514–523

    CAS  Google Scholar 

  • Lees FD, Clarkr PG, Nigg CR, Newman P (2005) Barriers to exercise behavior among older adults: a focus-group study. J Aging Phys Act 13:23–33

    PubMed  Google Scholar 

  • Leite LHR, Lacerda ACR, Marubayashi U, Coimbra CC (2006) Central angiotensin AT1-receptor blockade affects thermoregulation and running performance in rats. Am J Physiol Regul Integr Comp Physiol 291:R603–607. doi:10.1152/ajpregu.00038.2006

    Article  CAS  PubMed  Google Scholar 

  • Leite LHR, Lacerda ACR, Balthazar CH et al (2007) Central AT(1) receptor blockade increases metabolic cost during exercise reducing mechanical efficiency and running performance in rats. Neuropeptides 41:189–194. doi:10.1016/j.npep.2007.01.002

    Article  CAS  PubMed  Google Scholar 

  • Leite LHR, Rodrigues AG, Soares DD et al (2010) Central fatigue induced by losartan involves brain serotonin and dopamine content. Med Sci Sports Exerc 42:1469–1476. doi:10.1249/MSS.0b013e3181d03d36

    Article  CAS  PubMed  Google Scholar 

  • Liakos CI, Vyssoulis GP, Michaelides AP et al (2012) The effects of angiotensin receptor blockers vs. calcium channel blockers on the acute exercise-induced inflammatory and thrombotic response. Hypertens Res Off J Jpn Soc Hypertens 35:1193–1200. doi:10.1038/hr.2012.134

    Article  CAS  Google Scholar 

  • LIFE Study Investigators, Pahor M, Blair SN et al (2006) Effects of a physical activity intervention on measures of physical performance: results of the lifestyle interventions and independence for Elders Pilot (LIFE-P) study. J Gerontol A Biol Sci Med Sci 61:1157–1165

    Article  Google Scholar 

  • Li N-C, Lee A, Whitmer RA et al (2010) Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ 340:b5465

    Article  PubMed Central  PubMed  Google Scholar 

  • Lorenz JN (2010) Chymase: the other ACE? Am J Physiol - Ren Physiol 298:F35–F36. doi:10.1152/ajprenal.00641.2009

    Article  CAS  Google Scholar 

  • Machado RD, Santos RA, Andrade SP (2001) Mechanisms of angiotensin-(1-7)-induced inhibition of angiogenesis. Am J Physiol Regul Integr Comp Physiol 280:R994–R1000

    CAS  PubMed  Google Scholar 

  • Maggio M, Ceda GP, Lauretani F et al (2006) Relation of angiotensin-converting enzyme inhibitor treatment to insulin-like growth factor-1 serum levels in subjects >65 years of age (the InCHIANTI study). Am J Cardiol 97:1525–1529. doi:10.1016/j.amjcard.2005.11.089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marquis K, Maltais F, Lacasse Y et al (2008) Effects of aerobic exercise training and irbesartan on blood pressure and heart rate variability in patients with chronic obstructive pulmonary disease. Can Respir J J Can Thorac Soc 15:355–360

    Google Scholar 

  • Marzetti E, Calvani R, DuPree J, Lees HA, Giovannini S, Seo D, Buford TW, Sweet K, Morgan D, Strehler KYE, Diz D, Borst SE, Moningka M, Krotova K, Carter CS (2013) Late-life enalapril administration induces nitric oxidedependent and independent metabolic adaptations in the rat skeletal muscle. AGE 35(4):1061–1075

  • McBride TA (2006) AT1 receptors are necessary for eccentric training-induced hypertrophy and strength gains in rat skeletal muscle. Exp Physiol 91:413–421. doi:10.1113/expphysiol.2005.032490

    Article  CAS  PubMed  Google Scholar 

  • McFarlane SI, Kumar A, Sowers JR (2003) Mechanisms by which angiotensin-converting enzyme inhibitors prevent diabetes and cardiovascular disease. Am J Cardiol 91:30H–37H

    Article  CAS  PubMed  Google Scholar 

  • Miszko TA, Cress ME, Slade JM et al (2003) Effect of strength and power training on physical function in community-dwelling older adults. J Gerontol A Biol Sci Med Sci 58:171–175

    Article  PubMed  Google Scholar 

  • Miyazaki M, Takai S (2006) Tissue angiotensin II generating system by angiotensin-converting enzyme and chymase. J Pharmacol Sci 100:391–397

    Article  CAS  PubMed  Google Scholar 

  • Montgomery HE, Marshall R, Hemingway H et al (1998) Human gene for physical performance. Nature 393:221–222. doi:10.1038/30374

    Article  CAS  PubMed  Google Scholar 

  • Mukuda T, Sugiyama H (2007) An angiotensin II receptor antagonist suppresses running-enhanced hippocampal neurogenesis in rat. Neurosci Res 58:140–144. doi:10.1016/j.neures.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  • Muszalik M, Dijkstra A, Kędziora-Kornatowska K et al (2011) Independence of elderly patients with arterial hypertension in fulfilling their needs, in the aspect of functional assessment and quality of life (QoL). Arch Gerontol Geriatr 52:e204–209. doi:10.1016/j.archger.2010.11.011

    Article  PubMed  Google Scholar 

  • Myerson S, Hemingway H, Budget R et al (1999) Human angiotensin I-converting enzyme gene and endurance performance. J Appl Physiol Bethesda Md 1985 87:1313–1316

    CAS  Google Scholar 

  • Nashar K, Nguyen JP, Jesri A et al (2004) Angiotensin receptor blockade improves arterial distensibility and reduces exercise-induced pressor responses in obese hypertensive patients with the metabolic syndrome. Am J Hypertens 17:477–482. doi:10.1016/j.amjhyper.2004.02.015

    Article  CAS  PubMed  Google Scholar 

  • Nelson ME, Layne JE, Bernstein MJ et al (2004) The effects of multidimensional home-based exercise on functional performance in elderly people. J Gerontol A Biol Sci Med Sci 59:154–160

    Article  PubMed  Google Scholar 

  • Onder G, Penninx BWJH, Balkrishnan R et al (2002) Relation between use of angiotensin-converting enzyme inhibitors and muscle strength and physical function in older women: an observational study. Lancet 359:926–930

    Article  CAS  PubMed  Google Scholar 

  • Passos-Silva DG, Verano-Braga T, Santos RAS (2013) Angiotensin-(1-7): beyond the cardio-renal actions. Clin Sci Lond Engl 1979 124:443–456. doi:10.1042/CS20120461

    CAS  Google Scholar 

  • Paul M, Mehr AP, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev 86:747–803. doi:10.1152/physrev.00036.2005

    Article  CAS  PubMed  Google Scholar 

  • Penninx BW, Ferrucci L, Leveille SG et al (2000) Lower extremity performance in nondisabled older persons as a predictor of subsequent hospitalization. J Gerontol A Biol Sci Med Sci 55:M691–697

    Article  CAS  PubMed  Google Scholar 

  • Puthucheary DZ, Skipworth JRA, Rawal J et al (2011) The ACE gene and human performance. Sports Med 41:433–448. doi:10.2165/11588720-000000000-00000

    Article  PubMed  Google Scholar 

  • Reneland R, Lithell H (1994) Angiotensin-converting enzyme in human skeletal muscle. A simple in vitro assay of activity in needle biopsy specimens. Scand J Clin Lab Invest 54:105–111

    Article  CAS  PubMed  Google Scholar 

  • Rigat B, Hubert C, Alhenc-Gelas F et al (1990) An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86:1343–1346. doi:10.1172/JCI114844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodrigues MC, Campagnole-Santos MJ, Machado RP et al (2007) Evidence for a role of AT(2) receptors at the CVLM in the cardiovascular changes induced by low-intensity physical activity in renovascular hypertensive rats. Peptides 28:1375–1382. doi:10.1016/j.peptides.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  • Santos RA (2014) Angiotensin-(1–7). Hypertension 63:1138–1147. doi:10.1161/HYPERTENSIONAHA.113.01274

    Article  CAS  PubMed  Google Scholar 

  • Schellenbaum GD, Smith NL, Heckbert SR et al (2005) Weight loss, muscle strength, and angiotensin-converting enzyme inhibitors in older adults with congestive heart failure or hypertension. J Am Geriatr Soc 53:1996–2000. doi:10.1111/j.1532-5415.2005.53568.x

    Article  PubMed  Google Scholar 

  • Schindler C, Bramlage P, Kirch W, Ferrario CM (2007) Role of the vasodilator peptide angiotensin-(1-7) in cardiovascular drug therapy. Vasc Health Risk Manag 3:125–137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seeman TE, Merkin SS, Crimmins EM, Karlamangla AS (2010) Disability trends among older Americans: National Health and Nutrition Examination Surveys, 1988-1994 and 1999-2004. Am J Public Health 100:100–107. doi:10.2105/AJPH.2008.157388

    Article  PubMed Central  PubMed  Google Scholar 

  • Singh VP, Le B, Khode R et al (2008) Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes 57:3297–3306. doi:10.2337/db08-0805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sink KM, Leng X, Williamson J et al (2009) Angiotensin converting enzyme inhibitors and cognitive decline in older adults with hypertension: results from the Cardiovascular Health Study. Arch Intern Med 169:1195–1202. doi:10.1001/archinternmed.2009.175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith AG, Muscat GEO (2005) Skeletal muscle and nuclear hormone receptors: implications for cardiovascular and metabolic disease. Int J Biochem Cell Biol 37:2047–2063. doi:10.1016/j.biocel.2005.03.002

    Article  CAS  PubMed  Google Scholar 

  • Song Y-H, Li Y, Du J et al (2005) Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting. J Clin Invest 115:451–458. doi:10.1172/JCI22324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Souza JC, Tibana RA, de Sousa NMF et al (2013) Association of cardiovascular response to an acute resistance training session with the ACE gene polymorphism in sedentary women: a randomized trial. BMC Cardiovasc Disord 13:3. doi:10.1186/1471-2261-13-3

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Strazzullo P, Iacone R, Iacoviello L et al (2003) Genetic variation in the renin–angiotensin system and abdominal adiposity in men: the Olivetti Prospective Heart Study. Ann Intern Med 138:17–23

    Article  CAS  PubMed  Google Scholar 

  • Studenski S, Perera S, Patel K et al (2011) Gait speed and survival in older adults. JAMA J Am Med Assoc 305:50–58. doi:10.1001/jama.2010.1923

    Article  CAS  Google Scholar 

  • Sumukadas D, Witham MD, Struthers AD, McMurdo MET (2007) Effect of perindopril on physical function in elderly people with functional impairment: a randomized controlled trial. CMAJ Can Med Assoc J J Assoc Medicale Can 177:867–874. doi:10.1503/cmaj.061339

    Article  Google Scholar 

  • Sumukadas D, Band M, Miller S et al (2014) Do ACE inhibitors improve the response to exercise training in functionally impaired older adults? A randomized controlled trial. J Gerontol A Biol Sci Med Sci 69:736–743. doi:10.1093/gerona/glt142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tedesco A, Ally A (2009) Angiotensin II type-2 (AT2) receptor antagonism alters cardiovascular responses to static exercise and simultaneously changes glutamate/GABA levels within the ventrolateral medulla. Neurosci Res 64:372–379. doi:10.1016/j.neures.2009.04.008

    Article  CAS  PubMed  Google Scholar 

  • Tufescu A, Kanazawa M, Ishida A et al (2008) Combination of exercise and losartan enhances renoprotective and peripheral effects in spontaneously type 2 diabetes mellitus rats with nephropathy. J Hypertens 26:312–321. doi:10.1097/HJH.0b013e3282f2450b

    Article  CAS  PubMed  Google Scholar 

  • U.S. Census Bureau (2009) Population: elderly, racial and Hispanic origin population profiles. The 2012 statistical abstract. http://www.census.gov/compendia/statab/cats/population/elderly_racial_and_hispanic_origin_population_profiles.html. Accessed 3 Jul 2014

  • Velez JCQ, Ryan KJ, Harbeson CE et al (2009) Angiotensin I is largely converted to angiotensin (1-7) and angiotensin (2–10) by isolated rat glomeruli. Hypertension 53:790–797. doi:10.1161/HYPERTENSIONAHA.109.128819

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Chen Z, Jin S, Su Q (2007) Correlation between angiotensinogen gene and primary hypertension with cerebral infarction in the Li nationality of China. Neurosci Bull 23:287–292. doi:10.1007/s12264-007-0043-9

    Article  PubMed  Google Scholar 

  • Wang Z, Koike T, Li P et al (2012) Effects of angiotensin II AT1 receptor inhibition and exercise training on insulin action in rats on high-fat diet. Life Sci 90:322–327. doi:10.1016/j.lfs.2011.11.015

    Article  CAS  PubMed  Google Scholar 

  • Westerkamp CM, Gordon SE (2005) Angiotensin-converting enzyme inhibition attenuates myonuclear addition in overloaded slow-twitch skeletal muscle. Am J Physiol Regul Integr Comp Physiol 289:R1223–R1231. doi:10.1152/ajpregu.00730.2004

    Article  CAS  PubMed  Google Scholar 

  • Yanai K, Nibu Y, Murakami K, Fukamizu A (1996) A cis-acting DNA element located between TATA box and transcription initiation site is critical in response to regulatory sequences in human angiotensinogen gene. J Biol Chem 271:15981–15986

    Article  CAS  PubMed  Google Scholar 

  • Zankl AR, Ivandic B, Andrassy M et al (2010) Telmisartan improves absolute walking distance and endothelial function in patients with peripheral artery disease. Clin Res Cardiol Off J Ger Card Soc 99:787–794. doi:10.1007/s00392-010-0184-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Claude D. Pepper Older Americans Independence Centers (University of Florida, P30AG028740), University of Florida Clinical and Translational Science Institute (National Center for Research Resources, UL1RR029890, KL2RR029888), and NIH/NCATS Clinical and Translational Science Awards to the University of Florida (TL1 TR000066 and UL1 TR000064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Buford.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, C.B., Lee-McMullen, B., Phelan, D. et al. The renin–angiotensin system and prevention of age-related functional decline: where are we now?. AGE 37, 13 (2015). https://doi.org/10.1007/s11357-015-9753-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-015-9753-5

Keywords

Navigation