Skip to main content

Advertisement

Log in

Lifelong vitamin E intake retards age-associated decline of spatial learning ability in apoE-deficient mice

  • Research article
  • Published:
AGE Aims and scope Submit manuscript

Abstract

The potential for lifelong vitamin E supplementation to delay age-associated cognitive decline was tested in apoE-deficient and wild-type C57BL/6 mice. Beginning at eight weeks of age, the mice were maintained on a control diet or diets supplemented with dl-α-tocopheryl acetate yielding approximate daily intakes of either 20 or 200 mg/kg body weight. When 6 or 18 months of age, cognitive functioning of the mice was assessed using swim maze and discriminated avoidance testing procedures. For the mice maintained on control diets, the age-related declines in swim maze performance were relatively larger in apoE-deficient mice when compared with wild-type. On the other hand, age-associated declines in learning and working memory for discriminated avoidance were similar in the two genotypes. The 200-mg/kg dose of vitamin E prevented the accelerated decline in spatial learning apparent in 18-month-old apoE-deficient mice, but had no equivalent effect on performance declines attributable to normal aging in the wild-type mice. Vitamin E supplementation failed to prevent age-related impairments in learning and memory for discriminated avoidance observed in both the wild-type and apoE-deficient mice. The current findings are consistent with the hypothesis that apoE deficiency confers an accelerated, though probably selective, loss of brain function with age. This loss of function would appear to involve pathogenic oxidative mechanisms that can be prevented or offset by antioxidant supplementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buttini M, Orth M, Bellosta S, Akeefe H, Pitas RE and Wyss-Coray T et al. (1999) Expression of human apolipoprotein E3 or E4 in the brains of Apoe−/− mice: isoform-specific effects on neurodegeneration. J Neurosci 19: 4867–4880

    CAS  PubMed  Google Scholar 

  • Buttini M, Akeefe H, Lin C, Mahley RW, Pitas RE and Wyss-Coray T et al. (2000) Dominant negative effects of apolipoprotein E4 revealed in transgenic models of neurodegenerative disease. Neuroscience 97: 207–210

    Article  CAS  PubMed  Google Scholar 

  • Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB and Pierce WM et al. (2002a) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I. Creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 33: 562–571

    Article  CAS  PubMed  Google Scholar 

  • Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM and Booze R et al. (2002b) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II. Dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurochem 82: 1524–1532

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Forster MJ, McDonald SR, Weintraub ST, Carroll CA and Gracy RW (2004) Proteomic identification of specific oxidized proteins in ApoE-knockout mice: relevance to Alzheimer’s disease. Free Radic Biol Med 36: 1155–1162

    CAS  PubMed  Google Scholar 

  • Colton CA, Brown CM, Cook D, Needham LK, Xu Q and Czapiga M et al. (2002) APOE and the regulation of microglial nitric oxide production: a link between genetic risk and oxidative stress. Neurobiol Aging 23: 777–785

    Article  CAS  PubMed  Google Scholar 

  • Colton CA, Needham LK, Brown C, Cook D, Rasheed K and Burke JR et al. (2004) APOE genotype-specific differences in human and mouse macrophage nitric oxide production. J Neuroimmunol 147: 62–67

    Article  CAS  PubMed  Google Scholar 

  • Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC and Small GW et al. (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261: 921–923

    CAS  PubMed  Google Scholar 

  • Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE and Gaskell PC Jr et al. (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 7: 180–184

    CAS  PubMed  Google Scholar 

  • Fisher A, Brandeis R, Chapman S, Pittel Z and Michaelson DM (1998) M1 muscarinic agonist treatment reverses cognitive and cholinergic impairments of apolipoprotein E-deficient mice. J Neurochem 70: 1991–1997

    CAS  PubMed  Google Scholar 

  • Forster MJ and Lal H (1992) Within-subject behavioral analysis of recent memory in aging mice. Behav Pharmacol 3: 337–349

    PubMed  Google Scholar 

  • Forster MJ, Prather PL, Patel SR and Lal H (1995) The benzodiazepine receptor inverse agonist RO 15-3505 reverses recent memory deficits in aged mice. Pharmacol Biochem Behav 51: 557–560

    CAS  PubMed  Google Scholar 

  • Forster MJ, Dubey A, Dawson KM, Stutts WA, Lal H and Sohal RS (1996) Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci USA 93: 4765–4769

    CAS  PubMed  Google Scholar 

  • Gordon I, Grauer E, Genis I, Sehayek E and Michaelson DM (1995) Memory deficits and cholinergic impairments in apolipoprotein E-deficient mice. Neurosci Lett 199: 1–4

    CAS  PubMed  Google Scholar 

  • Gordon I, Genis I, Grauer E, Sehayek E and Michaelson DM (1996) Biochemical and cognitive studies of apolipoprotein-E-deficient mice. Mol Chem Neuropathol 28: 97–103

    CAS  PubMed  Google Scholar 

  • Gozes I (2004) Apolipoprotein E knockout mice as a model of behavioral dysfunction. J Mol Neurosci 23: 149–150

    CAS  PubMed  Google Scholar 

  • Grootendorst J, de Kloet ER, Dalm S and Oitzl MS (2001) Reversal of cognitive deficit of apolipoprotein E knockout mice after repeated exposure to a common environmental experience. Neuroscience 108: 237–247

    CAS  PubMed  Google Scholar 

  • Huang Y, Weisgraber KH, Mucke L and Mahley RW (2004) Apolipoprotein E: diversity of cellular origins, structural and biophysical properties, and effects in Alzheimer’s disease. J Mol Neurosci 23: 189–204

    CAS  PubMed  Google Scholar 

  • Hyman BT, Gomez-Isla T, Briggs M, Chung H, Nichols S and Kohout F et al. (1996) Apolipoprotein E and cognitive change in an elderly population. Ann Neurol 40: 55–66

    CAS  PubMed  Google Scholar 

  • Joseph JA, Shukitt-Hale B, Denisova NA, Prior RL, Cao G and Martin A et al. (1998) Long-term dietary strawberry, spinach, or vitamin E supplementation retards the onset of age-related neuronal signal-transduction and cognitive behavioral deficits. J Neurosci 18: 8047–8055

    CAS  PubMed  Google Scholar 

  • Lass A, Forster MJ and Sohal RS (1999) Effects of coenzyme Q10 and alpha-tocopherol administration on their tissue levels in the mouse: elevation of mitochondrial alpha-tocopherol by coenzyme Q10. Free Radic Biol Med 26: 1375–1382

    CAS  PubMed  Google Scholar 

  • Lee Y, Aono M, Laskowitz D, Warner DS and Pearlstein RD (2004) Apolipoprotein E protects against oxidative stress in mixed neuronal–glial cell cultures by reducing glutamate toxicity. Neurochem Int 44: 107–118

    CAS  PubMed  Google Scholar 

  • Lomnitski L, Chapman S, Hochman A, Kohen R, Shohami E and Chen Y et al. (1999) Antioxidant mechanisms in apolipoprotein E deficient mice prior to and following closed head injury. Biochim Biophys Acta 1453: 359–368

    CAS  PubMed  Google Scholar 

  • Mahley RW and Rall SC Jr (2000) Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet 1: 507–537

    CAS  PubMed  Google Scholar 

  • Martin A, Janigian D, Shukitt-Hale B, Prior RL and Joseph JA (1999) Effect of vitamin E intake on levels of vitamins E and C in the central nervous system and peripheral tissues: implications for health recommendations. Brain Res 845: 50–59

    CAS  PubMed  Google Scholar 

  • Masliah E, Mallory M, Ge N, Alford M, Veinbergs I and Roses AD (1995) Neurodegeneration in the central nervous system of apoE-deficient mice. Exp Neurol 136: 107–122

    CAS  PubMed  Google Scholar 

  • Masliah E, Samuel W, Veinbergs I, Mallory M, Mante M and Saitoh T (1997) Neurodegeneration and cognitive impairment in apoE-deficient mice is ameliorated by infusion of recombinant apoE. Brain Res 751: 307–314

    CAS  PubMed  Google Scholar 

  • Matthews RT and Beal MF (1996) Increased 3-nitrotyrosine in brains of Apo E-deficient mice. Brain Res 718: 181–184

    CAS  PubMed  Google Scholar 

  • McDonald SR, Lal H and Forster MJ (1997) Accelerated cognitive decline in apolipoprotein E deficient aging mice is independent of sensorimotor decline. Soc Neurosci Abstr 23: 2005

    Google Scholar 

  • McDonald SR, Sohal RS and Forster MJ (2005) Concurrent administration of coenzyme Q10 and α-tocopherol improves learning in aged mice. Free Radic Biol Med 38: 729–736

    Article  CAS  PubMed  Google Scholar 

  • Miyata M and Smith JD (1996) Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat Genet 14: 55–61

    Article  CAS  PubMed  Google Scholar 

  • Montine TJ, Montine KS, Olsen SJ, Graham DG, Roberts LJ and Morrow JD et al. (1999) Increased cerebral cortical lipid peroxidation and abnormal phospholipids in aged homozygous apoE-deficient C57BL/6 mice. Exp Neurol 158: 234–241

    Article  CAS  PubMed  Google Scholar 

  • Nicolle MM, Gonzalez J, Sugaya K, Baskerville KA, Bryan D and Lund K et al. (2001) Signatures of hippocampal oxidative stress in aged spatial learning-imparied rodents. Neuroscience 107: 415–431

    Article  CAS  PubMed  Google Scholar 

  • Oitzl MS, Mulder M, Lucassen PJ, Havekes LM, Grootendorst J and de Kloet ER (1997) Severe learning deficits in apolipoprotein E-knockout mice in a water maze task. Brain Res 752: 189–196

    Article  CAS  PubMed  Google Scholar 

  • Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM and Maeda N (1992) Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci USA 89: 4471–4475

    CAS  PubMed  Google Scholar 

  • Pratico D, Tangirala RK, Rader DJ, Rokach J and Fitzgerald GA (1998) Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in apoE-deficient mice. Nat Med 4: 1189–1192

    Article  CAS  PubMed  Google Scholar 

  • Raber J, Wong D, Yu GQ, Buttini M, Mahley RW and Pitas RE et al. (2000) Apolipoprotein E and cognitive performance. Nature 404: 352–354

    Article  CAS  Google Scholar 

  • Ramassamy C, Krzywkowski P, Averill D, Lussier-Cacan S, Theroux L and Christen Y et al. (2001) Impact of apoE deficiency on oxidative insults and antioxidant levels in the brain. Brain Res Mol Brain Res 86: 76–83

    Article  CAS  PubMed  Google Scholar 

  • Reed T, Carmelli D, Swan GE, Breitner JC, Welsh KA and Jarvik GP et al. (1994) Lower cognitive performance in normal older adult male twins carrying the apolipoprotein E epsilon 4 allele. Arch Neurol 51: 1189–1192

    CAS  PubMed  Google Scholar 

  • Reich EE, Montine KS, Gross MD, Roberts LJ II, Swift LL and Morrow JD et al. (2001) Interactions between apolipoprotein E gene and dietary alpha-tocopherol influence cerebral oxidative damage in aged mice. J Neurosci 21: 5993–5999

    CAS  PubMed  Google Scholar 

  • Roses AD (1996) Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med 47: 387–400

    Article  CAS  PubMed  Google Scholar 

  • Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA and Joo SH et al. (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43: 1467–1472

    CAS  PubMed  Google Scholar 

  • Shea TB, Rogers E, Ashline D, Ortiz D and Sheu MS (2002) Apolipoprotein E deficiency promotes increased oxidative stress and compensatory increases in antioxidants in brain tissue. Free Radic Biol Med 33: 1115–1120

    Article  CAS  PubMed  Google Scholar 

  • Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J and Salvesen GS et al. (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90: 1977–1981

    CAS  PubMed  Google Scholar 

  • Sumien N, Forster MJ and Sohal RS (2003) Supplementation with vitamin E fails to attenuate oxidative damage in aged mice. Exp Gerontol 38: 699–704

    Article  CAS  PubMed  Google Scholar 

  • Sumien N, Heinrich KR, Sohal RS and Forster MJ (2004) Short-term vitamin E intake fails to improve cognitive or psychomotor performance of aged mice. Free Radic Biol Med 36: 1424–1433

    Article  CAS  PubMed  Google Scholar 

  • Veinbergs I, Mallory M, Mante M, Rockenstein E, Gilbert JR and Masliah E (1999) Differential neurotrophic effects of apolipoprotein E in aged transgenic mice. Neurosci Lett 265: 218–222

    Article  CAS  PubMed  Google Scholar 

  • Veinbergs I, Mallory M, Sagara Y and Masliah E (2000) Vitamin E supplementation prevents spatial learning deficits and dendritic alterations in aged apolipoprotein E-deficient mice. Eur J Neurosci 12: 4541–4546

    Article  CAS  PubMed  Google Scholar 

  • Veurink G, Liu D, Taddei K, Perry G, Smith MA and Robertson TA et al. (2003) Reduction of inclusion body pathology in ApoE-deficient mice fed a combination of antioxidants. Free Radic Biol Med 34: 1070–1077

    Article  CAS  PubMed  Google Scholar 

  • Yaffe K, Haan M, Byers A, Tangen C and Kuller L (2000) Estrogen use, APOE, and cognitive decline: evidence of gene–environment interaction. Neurology 54: 1949–1954

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Forster.

About this article

Cite this article

McDonald, S.R., Forster, M.J. Lifelong vitamin E intake retards age-associated decline of spatial learning ability in apoE-deficient mice. AGE 27, 5–16 (2005). https://doi.org/10.1007/s11357-005-4003-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-005-4003-x

Key words

Navigation