Skip to main content

Advertisement

Log in

Removal of organic micropollutants from biologically treated greywater using continuous-flow vacuum-UV/UVC photo-reactor

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Despite growing apprehension regarding the fate of organic micropollutants (MPs) of emerging concern, little attention has been paid to their presence in domestic greywater, where they mainly originate from personal care products. Many MPs are not fully removed in conventional greywater treatments and require additional treatment. Vacuum-UV radiation (VUV) can generate ·OH in situ, via water photolysis, initiating advanced oxidation process (AOP) without any chemical addition. Despite growing interest in VUV-based AOP, its performance in real-life grey- or wastewater matrices has hardly been investigated. The present study investigates the removal of triclosan (TCS) and oxybenzone (BP3), common antibacterial and UV-filter MPs, in deionized water (DIW) and in treated greywater (TGW) using combined UVC/VUV or UVC only radiation in a continuous-flow reactor. Degradation kinetics of these MPs and their transformation products (TPs) were addressed, as well as bacterial growth inhibition of the resulting reactor’s effluent. In DIW, MP degradation was much faster under the combined UVC/VUV irradiation. In TGW, the combined radiation successfully removed both MPs but at lower efficiency than in DIW, as particles and dissolved organic matter (DOM) acted as radical scavengers. Filtration and partial DOM removal prior to irradiation improved the process efficiency and reduced energy requirements under the combined radiation (from 1.6 and 167 to 1.1 and 6.0 kWh m−3·ּorder−1 for TCS and BP3, respectively). VUV radiation also reduced TP concentrations in the effluent. As a result, bacterial growth inhibition of triclosan solution irradiated by VUC/VUV was lower than that irradiated by UVC light alone, for UV dose > 120 mJ cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfiya Y, Damti O, Stoler-Katz A, Zoubi A, Shaviv A, Friedler E (2012) Potential impacts of on-site greywater reuse in landscape irrigation. Water Sci Technol 65:757–764

    Article  CAS  Google Scholar 

  • Alfiya Y, Friedler E, Westphal J, Olsson O, Dubowski Y (2017) Photodegradation of micropollutants using V-UV/UV-C processes: triclosan as a model compound. Sci Total Environ 601–602:397–404. https://doi.org/10.1016/j.scitotenv.2017.05.172

    Article  CAS  Google Scholar 

  • Alfiya Y, Dubowski Y, Friedler E (2018) Diurnal patterns of micropollutants concentrations in domestic greywater. Urban Water J. https://doi.org/10.1080/1573062X.2018.1483524

    Article  CAS  Google Scholar 

  • APHA, AWWA, WEF (2012) Standard methods for examination of water and wastewater, 22nd edn. American Public Health Association, Washington

    Google Scholar 

  • Atanasova N, Dalmau M, Comas J, Poch M, Rodriguez-Roda I, Buttiglieri G (2017) Optimized MBR for greywater reuse systems in hotel facilities. J Environ Manag 193:503–511. https://doi.org/10.1016/j.jenvman.2017.02.041

    Article  Google Scholar 

  • Balmer ME, Buser H-R, Müller MD, Poiger T (2005) Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss lakes. Environ Sci Technol 39:953–962. https://doi.org/10.1021/es040055r

    Article  CAS  Google Scholar 

  • Bolton JR, Bircher KG, Tumas W, Tolman CA (1996) Figures-of-merit for the technical development and application of advanced oxidation processes. J Adv Oxid Technol 1(1):13–17

  • Chen G, Strevett KA (2003) Microbial surface thermodynamics and interactions in aqueous media. J Colloid Interface Sci 261:283–290

    Article  CAS  Google Scholar 

  • Chen Y, Ye J, Chen Y, Hu H, Zhang H, Ou H (2019) Degradation kinetics, mechanism and toxicology of tris(2-chloroethyl) phosphate with 185 nm vacuum ultraviolet. Chem Eng J 356:98–106. https://doi.org/10.1016/j.cej.2018.09.007

    Article  CAS  Google Scholar 

  • Chowdhury RK, El-Shorbagy W, Ghanma M, El-Ashkar A (2015) Quantitative assessment of residential water end uses and greywater generation in the city of Al Ain. Water Sci Technol Water Supply 15:114–123. https://doi.org/10.2166/ws.2014.090

    Article  Google Scholar 

  • Crittenden JC, Trussell RR, Hand DW, Howe KJ, Tchobanoglous G (2012) Principles of reactor analysis and mixing, in: MWH’s water treatment. Wiley, Hoboken, pp 287–390. https://doi.org/10.1002/9781118131473.ch6

    Book  Google Scholar 

  • Friedler E (2008) The water saving potential and the socio-economic feasibility of greywater reuse within the urban sector-Israel as a case study. Int J Environ Stud 65:57–69. https://doi.org/10.1080/00207230701846697

    Article  Google Scholar 

  • Friedler E, Gilboa Y (2010) Performance of UV disinfection and the microbial quality of greywater effluent along a reuse system for toilet flushing. Sci Total Environ 408:2109–2117

    Article  CAS  Google Scholar 

  • Friedler E, Kovalio R, Galil NI (2005) On-site greywater treatment and reuse in multi-storey buildings. Water Sci Technol 51:187–194

    Article  CAS  Google Scholar 

  • Gago-Ferrero P, Badia-Fabregat M, Olivares A, Piña B, Blánquez P, Vicent T, Caminal G, Díaz-Cruz MS, Barceló D (2012) Evaluation of fungal-and photo-degradation as potential treatments for the removal of sunscreens BP3 and BP1. Sci Total Environ 427:355–363

    Article  Google Scholar 

  • Gassie LW, Englehardt JD (2017) Advanced oxidation and disinfection processes for onsite net-zero greywater reuse: a review. Water Res. https://doi.org/10.1016/j.watres.2017.08.062

    Article  CAS  Google Scholar 

  • Gilboa Y, Friedler E (2008) UV disinfection of RBC-treated light greywater effluent: kinetics, survival and regrowth of selected microorganisms. Water Res 42:1043–1050

    Article  CAS  Google Scholar 

  • Giri RR, Ozaki H, Guo X, Takanami R, Taniguchi S (2015) Efficacies of UVC and VUV photolysis for mineralization of pharmaceutical compounds in mixed aqueous solution. Desalin Water Treat 54:3625–3631. https://doi.org/10.1080/19443994.2014.923204

    Article  CAS  Google Scholar 

  • Gong P, Yuan H, Zhai P, Xue Y, Li H, Dong W, Mailhot G (2015) Investigation on the degradation of benzophenone-3 by UV/H2O2 in aqueous solution. Chem Eng J 277:97–103

    Article  CAS  Google Scholar 

  • Gonzalez MG, Oliveros E, Wörner M, Braun AM (2004) Vacuum-ultraviolet photolysis of aqueous reaction systems. J Photochem Photobiol C: Photochem Rev 5:225–246. https://doi.org/10.1016/j.jphotochemrev.2004.10.002

    Article  CAS  Google Scholar 

  • Gross A, Kaplan D, Baker K (2007) Removal of chemical and microbiological contaminants from domestic greywater using a recycled vertical flow bioreactor (RVFB). Ecol Eng 31:107–114

    Article  Google Scholar 

  • Gu Y, Liu T, Zhang Q, Dong W (2017) Efficient decomposition of perfluorooctanoic acid by a high photon flux UV/sulfite process: kinetics and associated toxicity. Chem Eng J 326:1125–1133. https://doi.org/10.1016/j.cej.2017.05.156

    Article  CAS  Google Scholar 

  • Hernández-Leal L, Vieno N, Temmink H, Zeeman G, Buisman CJN (2010) Occurrence of xenobiotics in gray water and removal in three biological treatment systems. Environ Sci Technol 44:6835–6842. https://doi.org/10.1021/es101509e

    Article  CAS  Google Scholar 

  • Hu H, Chen Y, Ye J, Zhuang L, Zhang H, Ou H (2019) Degradation of ciprofloxacin by 185/254 nm vacuum ultraviolet: kinetics, mechanism and toxicology. Environ Sci Res Technol 5:564–576. https://doi.org/10.1039/c8ew00738a

    Article  CAS  Google Scholar 

  • Imoberdorf GE, Mohseni M (2011) Experimental study of the degradation of 2,4-D induced by vacuum-UV radiation. Water Sci Technol 63:1427–1433. https://doi.org/10.2166/wst.2011.321

    Article  CAS  Google Scholar 

  • James CP, Germain E, Judd S (2014) Micropollutant removal by advanced oxidation of microfiltered secondary effluent for water reuse. Sep Purif Technol 127:77–83

    Article  CAS  Google Scholar 

  • Jefferson B, Palmer A, Jeffrey P, Stuetz R, Judd S (2004) Grey water characterisation and its impact on the selection and operation of technologies for urban reuse. Water Sci Technol 50:157–164

    Article  CAS  Google Scholar 

  • Jeppesen B (1996) Domestic greywater re-use: Australia’s challenge for the future. Desalination 106:311–315

    Article  CAS  Google Scholar 

  • Kim I, Tanaka H (2009) Photodegradation characteristics of PPCPs in water with UV treatment. Environ Int 35:793–802

    Article  CAS  Google Scholar 

  • Klamerth N, Malato S, Maldonado MI, Agüera A, Fernández-Alba A (2011) Modified photo-Fenton for degradation of emerging contaminants in municipal wastewater effluents. Sel. Contrib. 6th Eur. Meet. Sol. Chem. Photocatal. Environ. Appl. (SPEA 6), 13th to 16th June 2010. 161, 241–246. https://doi.org/10.1016/j.cattod.2010.10.074

    Article  CAS  Google Scholar 

  • Lester Y, Mamane H, Avisar D (2012) Enhanced removal of micropollutants from groundwater, using pH modification coupled with photolysis. Water Air Soil Pollut 223:1639–1647. https://doi.org/10.1007/s11270-011-0971-x

    Article  CAS  Google Scholar 

  • Li M, Wang C, Yau M, Bolton JR, Qiang Z (2017) Sulfamethazine degradation in water by the VUV/UV process: kinetics, mechanism and antibacterial activity determination based on a mini-fluidic VUV/UV photoreaction system. Water Res 108:348–355. https://doi.org/10.1016/j.watres.2016.11.018

    Article  CAS  Google Scholar 

  • Li M, Hao M, Yang L, Yao H, Bolton JR, Blatchley ER III, Qiang Z (2018) Trace organic pollutant removal by VUV/UV/chlorine process: feasibility investigation for drinking water treatment on a mini-fluidic VUV/UV photoreaction system and a pilot photoreactor. Environ Sci Technol 52:7426–7433. https://doi.org/10.1021/acs.est.8b00611

    Article  CAS  Google Scholar 

  • Matafonova G, Batoev V (2017) Comparison of energy requirements for removal of organic micropollutants from lake water and wastewater effluents by direct UV and UV/H 2 O 2 using excilamp. Desalin Water Treat 85:92–102. https://doi.org/10.5004/dwt.2017.21245

    Article  CAS  Google Scholar 

  • Mezcua M, Gómez MJ, Ferrer I, Aguera A, Hernando MD, Fernández-Alba AR (2004) Evidence of 2,7/2,8-dibenzodichloro-p-dioxin as a photodegradation product of triclosan in water and wastewater samples. Anal Chim Acta 524:241–247. https://doi.org/10.1016/j.aca.2004.05.050

    Article  CAS  Google Scholar 

  • Miller D, Wheals BB, Beresford N, Sumpter JP (2001) Estrogenic activity of phenolic additives determined by an in vitro yeast bioassay. Environ Health Perspect 109:133–138

    CAS  Google Scholar 

  • Moussavi G, Shekoohiyan S (2016) Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process. J Hazard Mater 318:329–338

    Article  CAS  Google Scholar 

  • Orvos DR, Versteeg DJ, Inauen J, Capdevielle M, Rothenstein A, Cunningham V (2002) Aquatic toxicity of triclosan. Environ Toxicol Chem 21:1338–1349. https://doi.org/10.1002/etc.5620210703

    Article  CAS  Google Scholar 

  • Prieto-Rodríguez L, Spasiano D, Oller I, Fernández-Calderero I, Agüera A, Malato S (2013) Solar photo-Fenton optimization for the treatment of MWTP effluents containing emerging contaminants. Catal Today 209:188–194. https://doi.org/10.1016/j.cattod.2013.01.002

    Article  CAS  Google Scholar 

  • Quici N, Litter MI, Braun AA, Oliveros E (2008) Vacuum-UV-photolysis of aqueous solutions of citric and gallic acids. J Photochem Photobiol A Chem 197:306–312. https://doi.org/10.1016/j.jphotochem.2008.01.008

    Article  CAS  Google Scholar 

  • Rahn RO, Stefan MI, Bolton JR, Goren E, Shaw P-S, Lykke KR (2003) Quantum yield of the iodide-iodate chemical actinometer: dependence on wavelength and concentration¶. Photochem Photobiol 78:146–152. https://doi.org/10.1562/0031-8655(2003)0780146QYOTIC2.0.CO2

    Article  CAS  Google Scholar 

  • Rodil R, Moeder M (2008) Development of a method for the determination of UV filters in water samples using stir bar sorptive extraction and thermal desorption-gas chromatography-mass spectrometry. J Chromatogr A 1179:81–88

    Article  CAS  Google Scholar 

  • Rodil R, Quintana JB, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D (2009) Multi-residue analytical method for the determination of emerging pollutants in water by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1216:2958–2969

    Article  CAS  Google Scholar 

  • Sahu VK, Karmakar S, Kumar S, Shukla SP, Kumar K (2018) Triclosan toxicity alters behavioral and hematological parameters and vital antioxidant and neurological enzymes in Pangasianodon hypophthalmus (Sauvage, 1878). Aquat Toxicol 202:145–152. https://doi.org/10.1016/j.aquatox.2018.07.009

    Article  CAS  Google Scholar 

  • Seo C, Shin J, Lee M, Lee W, Yoom H, Son H, Jang S, Lee Y (2019) Elimination efficiency of organic UV filters during ozonation and UV/H2O2 treatment of drinking water and wastewater effluent. Chemosphere 230:248–257

    Article  CAS  Google Scholar 

  • Sun Y, Cho D-W, Graham NJD, Hou D, Yip ACK, Khan E, Song H, Li Y, Tsang DCW (2019) Degradation of antibiotics by modified vacuum-UV based processes: mechanistic consequences of H2O2 and K2S2O8 in the presence of halide ions. Sci Total Environ 664:312–321. https://doi.org/10.1016/j.scitotenv.2019.02.006

    Article  CAS  Google Scholar 

  • Tasaki T, Wada T, Baba Y, Kukizaki M (2009) Degradation of surfactants by an integrated nanobubbles/vuv irradiation technique. Ind Eng Chem Res 48:4237–4244

    Article  CAS  Google Scholar 

  • Tohidi F, Cai Z (2015) GC/MS analysis of triclosan and its degradation by-products in wastewater and sludge samples from different treatments. Environ Sci Pollut Res 22:11387–11400

    Article  CAS  Google Scholar 

  • Turner RDR, Warne MSJ, Dawes LA, Vardy S, Will GD (2016) Irrigated greywater in an urban sub-division as a potential source of metals to soil, groundwater and surface water. J Environ Manag 183:806–817. https://doi.org/10.1016/j.jenvman.2016.09.021

    Article  CAS  Google Scholar 

  • Wang J, Yang C, Wang C, Han W, Zhu W (2014) Photolytic and photocatalytic degradation of micro pollutants in a tubular reactor and the reaction kinetic models. Sep Purif Technol 122:105–111. https://doi.org/10.1016/j.seppur.2013.11.011

    Article  CAS  Google Scholar 

  • Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175. https://doi.org/10.1038/nprot.2007.521

    Article  CAS  Google Scholar 

  • Xie P, Yue S, Ding J, Wan Y, Li X, Ma J, Wang Z (2018) Degradation of organic pollutants by vacuum-ultraviolet (VUV): kinetic model and efficiency. Water Res 133:69–78. https://doi.org/10.1016/j.watres.2018.01.019

    Article  CAS  Google Scholar 

  • Xie P, Zou Y, Jiang S, Wang J, Zhang L, Wang Z, Yue S, Feng X (2019) Degradation of imipramine by vacuum ultraviolet (VUV) system: influencing parameters, mechanisms, and variation of acute toxicity. Chemosphere 233:282–291

    Article  CAS  Google Scholar 

  • Zhang Q, Ma X, Dzakpasu M, Wang XC (2017) Evaluation of ecotoxicological effects of benzophenone UV filters: luminescent bacteria toxicity, genotoxicity and hormonal activity. Ecotoxicol Environ Saf 142:338–347

    Article  CAS  Google Scholar 

  • Zorrilla LM, Gibson EK, Jeffay SC, Crofton KM, Setzer WR, Cooper RL, Stoker TE (2009) The effects of triclosan on puberty and thyroid hormones in male Wistar rats. Toxicol Sci 107:56–64. https://doi.org/10.1093/toxsci/kfn225

    Article  CAS  Google Scholar 

  • Zoschke K, Börnick H, Worch E (2014) Vacuum-UV radiation at 185 nm in water treatment--a review. Water Res 52:131–145. https://doi.org/10.1016/j.watres.2013.12.034

    Article  CAS  Google Scholar 

  • Zúñiga-Benítez H, Aristizábal-Ciro C, Peñuela GA (2016) Heterogeneous photocatalytic degradation of the endocrine-disrupting chemical benzophenone-3: parameters optimization and by-products identification. J Environ Manag 167:246–258

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Cheruti Uta and Dr. Azzam Nura for analytical assistance.

Funding

This study received financial support from the State of Lower Saxony, Ministry of Science and Culture and by the Volkswagen Foundation (Grant No. VWZN2830).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yael Dubowski.

Additional information

Responsible editor: Vítor Pais Vilar

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 491 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubowski, Y., Alfiya, Y., Gilboa, Y. et al. Removal of organic micropollutants from biologically treated greywater using continuous-flow vacuum-UV/UVC photo-reactor. Environ Sci Pollut Res 27, 7578–7587 (2020). https://doi.org/10.1007/s11356-019-07399-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07399-7

Keywords

Navigation