Skip to main content
Log in

Association analysis between spatiotemporal variation of vegetation greenness and precipitation/temperature in the Yangtze River Basin (China)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The variation in vegetation greenness provides good understanding of the sustainable management and monitoring of land surface ecosystems. The present paper discusses the spatial-temporal changes in vegetation and controlling factors in the Yangtze River Basin (YRB) using Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) for the period 2001–2013. Theil-Sen Median trend analysis, Pearson correlation coefficients, and residual analysis have been used, which shows decreasing trend of the annual mean NDVI over the whole YRB. Spatially, the regions with significant decreasing trends were mainly located in parts of central YRB, and pronounced increasing trends were observed in parts of the eastern and western YRB. The mean NDVI during spring and summer seasons increased, while it decreased during autumn and winter seasons. The seasonal mean NDVI shows spatial heterogeneity due to the vegetation types. The correlation analysis shows a positive relation between NDVI and temperature over most of the YRB, whereas NDVI and precipitation show a negative correlation. The residual analysis shows an increase in NDVI in parts of eastern and western YRB and the decrease in NDVI in the small part of Yangtze River Delta (YRD) and the mid-western YRB due to human activities. In general, climate factors were the principal drivers of NDVI variation in YRB in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Archer ERM (2004) Beyond the “climate versus grazing” impasse: using remote sensing to investigate the effects of grazing system choice on vegetation cover in the eastern Karoo. J Arid Environ 57:381–408

    Article  Google Scholar 

  • Bannari A, Morin D, Bonn F, Huete A (1995) A review of vegetation indices. Remote Sens Rev 13(1–2):95–120

    Article  Google Scholar 

  • de Beurs KM, Henebry GM (2004) Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan. Remote Sens Environ 89:497–509

    Article  Google Scholar 

  • Chaudhuri S, Dutta D (2014) Mann–Kendall trend of pollutants, temperature and humidity over an urban station of India with forecast verification using different ARIMA models. Environ Monit Assess 186(8):4719–4742

    Article  CAS  Google Scholar 

  • Chen BX, Zhang XZ, Tao J, Wu J, Wang JS, Shi PL, Zhang YJ, Yu CQ (2014a) The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric For Meteorol 189:11–18

    Article  Google Scholar 

  • Chen J, Wu XD, Finlayson BL, Webber M, Wei TY, Li MT, Chen ZY (2014b) Variability and trend in the hydrology of the Yangtze River, China: annual precipitation and runoff. J Hydrol 513:403–412

    Article  Google Scholar 

  • Cui LF, Wang LC, Lai ZP, Tian Q, Liu W, Li J (2017) Innovative trend analysis of annual and seasonal ari temperature and rainfall in the Yangtze River Basin, China during 1960–2015. J Atmos Sol-Terr Phy 164:48–59

    Article  Google Scholar 

  • Ding YH, Chan JCL (2005) The East Asian summer monsoon: an overview. Meteorog Atmos Phys 89(1):117–142

    Google Scholar 

  • Duan HC, Yan CZ, Tsunekawa A, Song X, Li S, Xie JL (2011) Assessing vegetation dynamics in the Three-North Shelter Forest region of China using AVHRR NDVI data. Environ Earth Sci 64:1011–1020

    Article  Google Scholar 

  • Eastman JR, Sangermano F, Machado EA, Rogan J, Anyamba A (2013) Global trends in seasonality of Normalized Difference Vegetation Index (NDVI), 1982–2011. Remote Sens 5(10):4799–4818

    Article  Google Scholar 

  • Evans J, Geerken R (2004) Discrimination between climate and human-induced dryland degradation. J Arid Environ 57:535–554

    Article  Google Scholar 

  • Fu GB, Yu JJ, Yu XB, Ouyang RL, Zhang YC, Wang P, Liu WB (2013) Temporal variation of extreme rainfall events in China, 1961–2009. J Hydrol 487:48–59

    Article  Google Scholar 

  • Gao Q, Wan Y, Xu H, Li Y, Jiangcun W, Borjigidai A (2010) Alpine grassland degradation index and its response to recent climate variability in Northern Tibet, China. Quat Int 226(1):143–150

    Article  Google Scholar 

  • Gao F, de Colstoun EB, Ma R, Weng Q, Masek JG, Chen J, Pan Y, Song C (2012) Mapping impervious surface expansion using medium-resolution satellite image time series: a case study in the Yangtze River Delta, China. Int J Remote Sens 33(24):7609–7628

    Article  Google Scholar 

  • Goetz SJ, Bunn AG, Fiske GJ, Houghton RA (2005) Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc Natl Acad Sci U S A 102:13521–13525

    Article  CAS  Google Scholar 

  • Guan YH, Zheng FL, Wang B (2015) Trends and variability of daily temperature extremes during 1960–2012 in the Yangtze River Basin, China. Glob Planet Chang 124:79–94

    Article  Google Scholar 

  • Guo ZD, Hu HF, Li P, Li N, Fang J (2013) Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008. Sci China-Life Sci 56:661–671 (in Chinese)

    Article  CAS  Google Scholar 

  • Hamed KH (2008) Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. J Hydrol 349:350–363

    Article  Google Scholar 

  • Herrmann SM, Anyamba A, Tucker CJ (2005) Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob Environ Chang 15:394–404

    Article  Google Scholar 

  • Holben BN (1986) Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens 7:1417–1434

    Article  Google Scholar 

  • Hurtt GC, Moorcroft P, Pacala SW, Levin SA (1998) Terrestrial models and global change: challenges for the future. Glob Chang Biol 4(5):581–590

    Article  Google Scholar 

  • Ichii K, Kawabata A, Yamaguchi Y (2002) Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982–1990. Int J Remote Sens 23(18):3873–3878

    Article  Google Scholar 

  • IPCC AR5, 2013. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM. (Eds.) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Jiang W, Yuan L, Wang W, Cao R, Zhang Y, Shen W (2015) Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol Indic 51:117–126

    Article  Google Scholar 

  • Jiang LL, Guli J, Bao AM, Guo H, Ndayisaba F (2017) Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci Total Environ 599-600:967–980

    Article  CAS  Google Scholar 

  • Kendall MG (1938) A new measure of rank correlation. Biometrika 30:81–93

    Article  Google Scholar 

  • Kendall MG (1970) Rank correlation methods, 4th edn. London: Griffin

  • Li QF, Yu MX, Lu GB, Cai T, Bai X, Xia ZQ (2011) Impacts of the Gezhouba and Three Gorges reservoirs on the sediment regime in the Yangtze River, China. J Hydrol 403(3–4):224–233

    Article  Google Scholar 

  • Li S, Xu M, Sun B (2013) Long-term hydrological response to reforestation in a large watershed in southeastern China. Hydrol Process 28:5573–5582. https://doi.org/10.1002/hyp.10018

    Article  Google Scholar 

  • Li XX, Ju H, Yan CR, Liu Q, Li YC (2015a) Spatio-temporal variability of water deficit in Huang-Huai-Hai Plain during 1961–2013. Chin J Agrometeorol 36(3):254–262 (in Chinese)

    CAS  Google Scholar 

  • Li CF, Zhang C, Luo GP, Chen X, Maisupova B, Madaminov AA, Han Q, Djenbaev BM (2015b) Carbon stock and its responses to climate change in Central Asia. Glob Chang Biol 21(5):1951–1967

    Article  Google Scholar 

  • Li JJ, Peng SZ, Li Z (2017) Detecting and attributing vegetation changes on China’s Loess Plateau. Agric For Meteorol 247:260–270

    Article  Google Scholar 

  • Liu J, Zhang X, Xu W, Kuang W, Zhou S, Zhang R, Li C, Yan D, Wu S (2010) Spatial patterns and driving forces of land use change in China during the early 21st century. J Geogr Sci 20(4):483–494

    Article  Google Scholar 

  • Liu J, Zhang Q, Hu Y (2012) Regional differences of China’s urban expansion from late 20th to early 21st century based on remote sensing information. Chin Geogr Sci 22(1):1–14

    Article  Google Scholar 

  • Liu XF, Zhang JS, Zhu XF, Pan YZ, Liu YX, Zhang DH, Li ZH (2014a) Spatiotemporal changes in vegetation coverage and its driving factors in the Three-River Headwaters Region during 2000–2011. J Geogr Sci 24(2):288–302

    Article  Google Scholar 

  • Liu ZJ, Wang SS, Wang LC (2014b) Comparison of different GPP models in China using MODIS image and ChinaFLUX data. Remote Sens 6:10215–10231

    Article  Google Scholar 

  • Liu XF, Zhu XF, Li SS, Liu YX, Pan YZ (2015) Changes in growing season vegetation and their associated driving forces in China during 2001–2012. Remote Sens 7:15517–15535

    Article  Google Scholar 

  • Liu ZJ, Liu YS, Wang SS, Yang XJ, Wang LC, Ali Baig MH, Chi WF, Wang ZS (2018) Evaluation of spatial and temporal performances of ERA-Interim precipitation and temperature in mainland China. J Clim 31:4347–4365. https://doi.org/10.1175/JCLI-D-17-0212.1

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13(3):245–259

    Article  Google Scholar 

  • Milliman JD, Farnsworth KL (2011) River discharge to the coastal ocean: a global synthesis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Mohammad AG, Adam MA (2010) The impact of vegetative cover type on runoff and soil erosion under different land uses. Catena 81(2):97–103

    Article  Google Scholar 

  • Ouyang Z, Zheng H, Xiao Y, Polasky S, Liu JG, Xu WH, Wang Q, Zhang L, Xiao Y, Rao E, Jiang L, Lu F, Wang XK, Yang GB, Gong SH, Wu BF, Zeng Y, Yang W, Daily GC (2016) Improvements in ecosystem services from investments in natural capital. Science 352(3292):1455–1459

    Article  CAS  Google Scholar 

  • Pang GJ, Wang XJ, Yang MX (2016) Using the NDVI to identify variations in, and responses of, vegetation to climate change on the Tibetan Plateau from 1982 to 2012. Quat Int 444:87–96. https://doi.org/10.1016/j.quaint.2016.08.038

    Article  Google Scholar 

  • Peng SS, Chen AP, Xu L, Cao CX, Fang JY, Myneni RB, Pinzon JE, Tucker CJ, Piao SL (2011) Recent change of vegetation growth trend in China. Environ Res Lett 6(4):044027

    Article  Google Scholar 

  • Peng J, Liu ZH, Liu YH, Wu JSHYN (2012) Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst Exponent. Ecol Indic 14:28–39

    Article  Google Scholar 

  • Peng SS, Piao SL, Ciais P, Myneni RB, Chen AP, Chevallier F, Dolman AJ, Janssens IA, Peñuelas J, Zhang GX, Vicca S, Wan SP, Zeng H (2013) Asymmetric effects of daytime and night-time warming on northern hemisphere vegetation. Nature 501(7465):88–92

    Article  CAS  Google Scholar 

  • Piao S, Fang J, Zhou L, Guo Q, Henderson M, Ji W, Li Y, Tao S (2003) Interannual variations of monthly and seasonal Normalized Difference Vegetation Index (NDVI) in China from 1982 to 1999. J Geophys Res Atmos 108(D14), 4401. https://doi.org/10.1029/2002JD002848

  • Piao S, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang J, Barr A, Chen A (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451(7174):49–52

    Article  CAS  Google Scholar 

  • Piao S, Yin G, Tan J, Cheng L, Huang M, Li Y, Liu R, Mao J, Myneni RB, Peng S (2015) Detection and attribution of vegetation greening trend in China over the last 30 years. Glob Chang Biol 21(4):1601–1609

    Article  Google Scholar 

  • Potter C, Klooster S, Genovese V (2012) Net primary production of terrestrial ecosystems from 2000 to 2009. Clim Chang 115(2):365–378

    Article  Google Scholar 

  • Qu S, Wang LC, Lin AW, Zhu HJ, Yuan MX (2018) What drives the vegetation restoration in Yangtze River Basin, China: climate change or anthropogenic factors? Ecol Indic 90:438–450

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389

    Article  Google Scholar 

  • Sun W, Song X, Mu X, Gao P, Wang F, Zhao G (2015) Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric For Meteorol 209-210:87–99

    Article  Google Scholar 

  • Sun B, Li ZY, Gao ZH, Guo Z, Wang BY, Hu XL, Bai LN (2017) Grassland degradation and restoration monitoring and driving forces analysis based on long time-series remote sensing data in Xilin Gol League. Acta Ecological Sinica 37:219–228

    Article  Google Scholar 

  • Theil H (1950) A rank-invariant method of linear and polynomial regression analysis. I, II and III. Proc. K. Ned. Akad. Wet. 53, 386–392, 521–525, 1397–1412

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94

    Article  Google Scholar 

  • Tian Q, Prange M, Merkel U (2016) Precipitation and temperature changes in the major Chinese river basins during 1957–2013 and links to sea surface temperature. J Hydrol 536:208–221

    Article  Google Scholar 

  • Tucker CJ, Pinzon JE, Brown ME, Slayback DA, Pak EW, Mahoney R, Vermote EF, El Saleous N (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26:4485–4498

    Article  Google Scholar 

  • Vicente-Serrano SM, Gouveiab C, Camarero JJ, Beguería S, Trigo R, López-Moreno JI, Azorín-Molina C, Pasho E, Lorenzo-Lacruz J, Revuelto J, Morán-Tejeda E, Sanchez-Lorenzo A (2013) Response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci U S A 110(1):52–57

    Article  Google Scholar 

  • Vrieling A, de Leeuw J, Said M (2013) Length of growing period over Africa: variability and trends from 30 years of NDVI time series. Remote Sens 5(2):982–1000

    Article  Google Scholar 

  • Wang J, Rich PM, Price KP (2003) Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int J Remote Sens 24(11):2345–2364

    Article  Google Scholar 

  • Wang G, Innes JL, Lei J, Dai S, Wu SW (2007) China’s forestry reforms. Science 318(5856):1556–1557

    Article  CAS  Google Scholar 

  • Wang HL, Chen AF, Wang QF, He B (2015) Drought dynamics and impacts on vegetation in China from 1982 to 2011. Ecol Eng 75:303–307

    Article  Google Scholar 

  • Wang L, Chen Y, Niu Y, Salazar G, Gon W (2017) Analysis of atmospheric turbidity in clear skies at Wuhan, Central China. J Earth Sci 28(4):729–738

    Article  Google Scholar 

  • Xu M, Ma C (2009) Yangtze River Basin climate change vulnerability and adaptation report. China Water Power Press, Beijing

    Google Scholar 

  • Xu YF, Yang J, Chen YN (2016) NDVI-based vegetation responses to climate change in an arid area of China. Theor App Climatol 126:213–222

    Article  Google Scholar 

  • Yang SL, Milliman JD, Xu KH, Deng B, Zhang XY, Luo XX (2014) Downstream sedimentary and geomorphic impacts of the Three Gorges Dam on the Yangtze River. Earth Sci Rev 138:469–486

    Article  Google Scholar 

  • Yao R, Wang LC, Gui X, Zheng YK, Zhang HM, Huang X (2017) Urbanization effects on vegetation and surface urban heat islands in China’s Yangtze River Basin. Remote Sens 9:540. https://doi.org/10.3390/rs9060540

    Article  Google Scholar 

  • Zhang Q, Jiang T, Gemmer M, Becker S (2005) Precipitation, temperature and runoff analysis from 1950 to 2002 in the Yangtze basin, China. J Hydrol Sci 50(1):65–80

    Article  Google Scholar 

  • Zhang Q, Xu C, Jiang T, Wu Y (2007) Possible influence of ENSO on annual maximum streamflow of the Yangtze River, China. J Hydrol 333(2):265–274

    Article  Google Scholar 

  • Zhang YL, Song CH, Zhang KR, Cheng XL, Band LE, Zhang QF (2014) Effects of land use/land cover and climate changes on terrestrial net primary productivity in the Yangtze River Basin, China, from 2001 to 2010. J Geophys Res Biogeosci 119(6):1092–1109

    Article  Google Scholar 

  • Zhang Y, Peng C, Li W, Tian L, Zhu Q, Chen H, Fang X, Zhang G, Liu G, Mu X, Li Z, Li S, Yang Y, Wang J, Xiao X (2016) Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013. Ecol Indic 61:404–412

    Article  Google Scholar 

  • Zhang Q, Kong DD, Singh VP, Shi PJ (2017a) Response of vegetation to different time-scales drought across China: spatiotemporal patterns, causes and implications. Glob Planet Chang 152:1–11

    Article  CAS  Google Scholar 

  • Zhang YL, Song CH, Band LE, Sun G, Li JX (2017b) Reanalysis of global terrestrial vegetation trends from MODIS products: browning or greening? Remote Sens Environ 191:145–155

    Article  Google Scholar 

  • Zhao GJ, Mu XM, Hörmann G, Fohrer N, Xiong M, Su BD, Li XC (2012) Spatial patterns and temporal variability of dryness/wetness in the Yangtze River Basin, China. Quat Int 282:5–13

    Article  Google Scholar 

  • Zhou Y, Zhang L, Fensholt R, Wang K, Vitkovskaya I, Tian F (2015) Climate contributions to vegetation variations in central Asian drylands: pre- and post-USSR collapse. Remote Sens 7:2449–2470

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the China Meteorological Administration (CMA) for providing the meteorological data.

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 41601044), the Special Fund for Basic Scientific Research of Central Colleges, China University of Geosciences, Wuhan (Nos. CUG150631, CUGL170401, and CUGCJ1704), and the Natural Science Foundation for Distinguished Young Scholars of Hubei Province of China (No. 2016CFA051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lunche Wang.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 21272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L., Wang, L., Singh, R.P. et al. Association analysis between spatiotemporal variation of vegetation greenness and precipitation/temperature in the Yangtze River Basin (China). Environ Sci Pollut Res 25, 21867–21878 (2018). https://doi.org/10.1007/s11356-018-2340-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2340-4

Keywords

Navigation