Skip to main content
Log in

Adsorption of As(III) versus As(V) from aqueous solutions by cerium-loaded volcanic rocks

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Contamination of drinking water with arsenic causes severe health problems in various world regions. Arsenic exists predominantly as As(III) and As(V) depending on the prevailing redox conditions of the environment. Most of the techniques developed for treating As(V) are not very effective for As(III), which is more toxic and mobile than As(V). In this study, novel cerium-loaded pumice (Ce-Pu) and red scoria (Ce-Rs) adsorbents were developed to remove both As(III) and As(V) ions from water. The Ce-Pu and Ce-Rs adsorbents were characterized using ICP-OES, EDX, and SEM. The experimental equilibrium sorption data fitted well Freundlich and Dubinin-Radushkevich (D-R) isotherms. The adsorption was very fast and reached an equilibrium within 2 h. Both Ce-Rs and Ce-Pu showed high As(III) and As(V) removal efficiency in a wide pH range between 3 and 9, which is an important asset for practical applications. The Ce-Pu and Ce-Rs adsorbents can be recycled and used up to three adsorption cycles without significant loss of their original efficiency. Accordingly, Ce-Pu and Ce-Rs seem to be suitable for removal of arsenic from aqueous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alemayehu T (2004) Water pollution by natural inorganic chemicals in the central part of the Main Ethiopian Rift. SINET: Ethiopian J Sci 23:197–214

    Google Scholar 

  • Alemayehu E, Lennartz B (2009) Virgin volcanic rocks: kinetics and equilibrium studies for the adsorption of cadmium from water. J Hazard Mater 169:395–401

    Article  CAS  Google Scholar 

  • Alemu S, Mulugeta E, Zewge F, Chandravanshi BS (2014) Water defluoridation by aluminium oxide-manganese oxide composite material. Environ Technol 35:1893–1903

    Article  CAS  Google Scholar 

  • Appel C, Ma LQ, Rhue RD, Kennelley E (2003) Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility. Geoderma 113:77–93

    Article  CAS  Google Scholar 

  • Asere TG, De Clercq J, Verbeken K, Tessema DA, Fufa F, Stevens CV, Du Laing G (2017) Uptake of arsenate by aluminum (hydr)oxide coated red scoria and pumice. Appl Geochem 78:83–95

    Article  CAS  Google Scholar 

  • Asgari G, Roshani B, Ghanizadeh G (2012) The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone. J Hazard Mater 217–218:123–132

    Article  Google Scholar 

  • Basu T, Ghosh UC (2013) Nano-structured iron (III)–cerium (IV) mixed oxide: synthesis, characterization and arsenic sorption kinetics in the presence of co-existing ions aiming to apply for high arsenic groundwater treatment. Appl Surf Sci 283:471–481

    Article  CAS  Google Scholar 

  • Biswas BK, Inoue K, Ghimire KN, Kawakita H, Ohto K, Harada H (2008) Effective removal of arsenic with lanthanum(III)- and cerium(III)-loaded orange waste gels. Sep Sci Technol 43:2144–2165

    Article  CAS  Google Scholar 

  • Bolt HM (2012) Arsenic: an ancient toxicant of continuous public health impact, from Iceman Otzi until now. Arch Toxicol 86:825–830

    Article  CAS  Google Scholar 

  • Boyaci E, Eroglu AE, Shahwan T (2010) Sorption of As(V) from waters using chitosan and chitosan-immobilized sodium silicate prior to atomic spectrometric determination. Talanta 80:1452–1460

    Article  CAS  Google Scholar 

  • Chen CJ, Chen CW, Wu MM, Kuo TL (1992) Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br J Cancer 66:888–892

    Article  CAS  Google Scholar 

  • Chiou H-Y, Hsueh Y-M, Liaw K-F, Horng S-F, Chiang M-H, Pu Y-S, Lin JS-N, Huang C-H, Chen C-J (1995) Incidence of internal cancers and ingested inorganic arsenic: a seven-year follow-up study in Taiwan. Cancer Res 55:1296–1300

    CAS  Google Scholar 

  • D’Arcy M, Weiss D, Bluck M, Vilar R (2011) Adsorption kinetics, capacity and mechanism of arsenate and phosphate on a bifunctional TiO2–Fe2O3 bi-composite. J Colloid Interface Sci 364:205–212

    Article  Google Scholar 

  • Elizalde-Gonzalez MP, Mattusch J, Einicke WD, Wennrich R (2001) Sorption on natural solids for arsenic removal. Chem Eng J 81:187–195

    Article  CAS  Google Scholar 

  • Elson CM, Davies DH, Hayes ER (1980) Removal of arsenic from contaminated drinking-water by a chitosan-chitin mixture. Water Res 14:1307–1311

    Article  CAS  Google Scholar 

  • Far LB, Souri B, Heidari M, Khoshnavazi R (2012) Evaluation of iron and manganese-coated pumice application for the removal of As(V) from aqueous solutions. Iran J Environ Health Sci Eng 9:1

    Article  Google Scholar 

  • Fox DI, Stebbins DM, Alcantar NA (2016) Combining ferric salt and cactus mucilage for arsenic removal from water. Environ Sci Technol 50:2507–2513

    Article  CAS  Google Scholar 

  • Fufa F, Alemayehu E, Lennartz B (2013) Defluoridation of groundwater using termite mound. Water Air Soil Pollut 224:1552

    Article  Google Scholar 

  • Fufa F, Alemayehu E, Lennartz B (2014) Sorptive removal of arsenate using termite mound. J Environ Manag 132:188–196

    Article  CAS  Google Scholar 

  • Genz A, Kornmuller A, Jekel M (2004) Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide. Water Res 38:3523–3530

    Article  CAS  Google Scholar 

  • Gupta K, Ghosh UC (2009) Arsenic removal using hydrous nanostructure iron(III)–titanium(IV) binary mixed oxide from aqueous solution. J Hazard Mater 161:884–892

    Article  CAS  Google Scholar 

  • Gupta VK, Saini VK, Jain N (2005) Adsorption of As(III) from aqueous solutions by iron oxide-coated sand. J Colloid Interface Sci 288:55–60

    Article  CAS  Google Scholar 

  • Guzman A, Nava JL, Coreno O, Rodriguez I, Gutierrez S (2016) Arsenic and fluoride removal from groundwater by electrocoagulation using a continuous filter-press reactor. Chemosphere 144:2113–2120

    Article  CAS  Google Scholar 

  • Haron MJ, Ab Rahim F, Abdullah AH, Hussein MZ, Kassim A (2008a) Sorption removal of arsenic by cerium-exchanged zeolite P. Mater Sci Eng B Adv Funct Solid State Mater 149:204–208

    Article  CAS  Google Scholar 

  • Haron MJ, Ab Rahim F, Abdullah AH, Hussein MZ, Kassim A (2008b) Sorption removal of arsenic by cerium-exchanged zeolite P. Mater Sci Eng B 149:204–208

    Article  CAS  Google Scholar 

  • He ZL, Tian SL, Ning P (2012) Adsorption of arsenate and arsenite from aqueous solutions by cerium-loaded cation exchange resin. J Rare Earths 30:563–572

    Article  CAS  Google Scholar 

  • He SF, Han CY, Wang H, Zhu WJ, He SY, He DD, Luo YM (2015) Uptake of arsenic(V) using alumina functionalized highly ordered mesoporous SBA-15 (Al-x-SBA-15) as an effective adsorbent. J Chem Eng Data 60:1300–1310

    Article  CAS  Google Scholar 

  • Heidari M, Moattar F, Naseri S, Samadi MT, Khorasani N (2011) Evaluation of aluminum-coated pumice as a potential arsenic(V) adsorbent from water resources. Int J Environ Res 5:447–456

    CAS  Google Scholar 

  • Hsu JC, Lin CJ, Liao CH, Chen ST (2008) Removal of As(V) and As(III) by reclaimed iron-oxide coated sands. J Hazard Mater 153:817–826

    Article  CAS  Google Scholar 

  • Jadhav SV, Bringas E, Yadav GD, Rathod VK, Ortiz I, Marathe KV (2015) Arsenic and fluoride contaminated groundwaters: a review of current technologies for contaminants removal. J Environ Manag 162:306–325

    Article  CAS  Google Scholar 

  • Karimaian KA, Amrane A, Kazemian H, Panahi R, Zarrabi M (2013) Retention of phosphorous ions on natural and engineered waste pumice: characterization, equilibrium, competing ions, regeneration, kinetic, equilibrium and thermodynamic study. Appl Surf Sci 284:419–431

    Article  CAS  Google Scholar 

  • Kitchin KT, Wallace K (2005) Arsenite binding to synthetic peptides based on the Zn finger region and the estrogen binding region of the human estrogen receptor-α. Toxicol Appl Pharmacol 206:66–72

    Article  CAS  Google Scholar 

  • Kitis M, Kaplan SS, Karakaya E, Yigit NO, Civelekoglu G (2007) Adsorption of natural organic matter from waters by iron coated pumice. Chemosphere 66:130–138

    Article  CAS  Google Scholar 

  • Kumar KV (2006) Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon. J Hazard Mater 137:1538–1544

    Article  CAS  Google Scholar 

  • Kumar PS, Flores RQ, Sjostedt C, Onnby L (2016) Arsenic adsorption by iron-aluminium hydroxide coated onto macroporous supports: insights from X-ray absorption spectroscopy and comparison with granular ferric hydroxides. J Hazard Mater 302:166–174

    Article  Google Scholar 

  • Kundu S, Gupta AK (2006) Arsenic adsorption onto iron oxide-coated cement (IOCC): regression analysis of equilibrium data with several isotherm models and their optimization. Chem Eng J 122:93–106

    Article  CAS  Google Scholar 

  • Lakshmipathiraj P, Narasimhan BRV, Prabhakar S, Raju GB (2006) Adsorption studies of arsenic on Mn-substituted iron oxyhydroxide. J Colloid Interface Sci 304:317–322

    Article  CAS  Google Scholar 

  • Li Z, Qu J, Li H, Lim TC, Liu C (2011) Effect of cerium valence on As(V) adsorption by cerium-doped titanium dioxide adsorbents. Chem Eng J 175:207–212

    Article  CAS  Google Scholar 

  • Li R, Li Q, Gao S, Shang JK (2012) Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: part A. Adsorpt Capacit Mech Chem Eng J 185:127–135

    Google Scholar 

  • Liu C, Evett J (2003) Soil properties—testing, Measurement, and Evaluation. Banta Book Company, USA ISBN 0-13-093005-9

    Google Scholar 

  • Liu F, De Cristofaro A, Violante A (2001) Effect of pH, phosphate and oxalate on the adsorption/desorption of arsenate on/from goethite. Soil Sci 166:197–208

    Article  CAS  Google Scholar 

  • Liu B, Wang D, Yu G, Meng X (2013) Removal of F- from aqueous solution using Zr(IV) impregnated dithiocarbamate modified chitosan beads. Chem Eng J 228:224–231

    Article  CAS  Google Scholar 

  • Massoudinejad M, Asadi A, Vosoughi M, Gholami M, Karami MA (2015) A comprehensive study (kinetic, thermodynamic and equilibrium) of arsenic (V) adsorption using KMnO4 modified clinoptilolite. Korean J Chem Eng 32:2078–2086

    Article  CAS  Google Scholar 

  • McKenzie JM, Siegel DI, Patterson W, McKenzie DJ (2001) A geochemical survey of spring water from the main Ethiopian rift valley, southern Ethiopia: implications for well-head protection. Hydrogeol J 9:265–272

    Article  CAS  Google Scholar 

  • Mohapatra D, Mishra D, Chaudhury GR, Das RP (2007) Arsenic(V) adsorption mechanism using kaolinite, montmorillonite and illite from aqueous medium. J Environ Sci Health A-Toxic/Hazard Subst Environ Eng 42:463–469

    Article  CAS  Google Scholar 

  • Peric J, Trgo M, Medvidovic NV (2004) Removal of zinc, copper and lead by natural zeolite—a comparison of adsorption isotherms. Water Res 38:1893–1899

    Article  CAS  Google Scholar 

  • Pillewan P, Mukherjee S, Meher AK, Rayalu S, Bansiwal A (2014) Removal of arsenic (III) and arsenic (V) using copper exchange zeolite-a. Environ Prog Sustain Energy 33:1274–1282

    CAS  Google Scholar 

  • Rijith S, Anirudhan TS, Sumi VSN, Shripathi T (2016) Sorptive potential of glutaraldehyde cross-linked epoxyaminated chitosan for the removal of Pb(II) from aqueous media: kinetics and thermodynamic profile. Desalin Water Treat 57:15083–15097

    Article  CAS  Google Scholar 

  • Rouff AA, Ma N, Kustka AB (2016) Adsorption of arsenic with struvite and hydroxylapatite in phosphate bearing solutions. Chemosphere 146:574–581

    Article  CAS  Google Scholar 

  • Sanchez-Cantu M, Galicia-Aguilar JA, Santamaria-Juarez D, Hernandez-Moreno LE (2016) Evaluation of the mixed oxides produced from hydrotalcite-like compound’s thermal treatment in arsenic uptake. Appl Clay Sci 121:146–153

    Article  Google Scholar 

  • Sekomo CB, Rousseau DPL, Lens PNL (2012) Use of Gisenyi volcanic rock for adsorptive removal of Cd(II), Cu(II), Pb(II), and Zn(II) from wastewater. Water Air Soil Pollut 223:533–547

    Article  CAS  Google Scholar 

  • Sepehr MN, Zarrabi M, Kazemian H, Amrane A, Yaghmaian K, Ghaffari HR (2013) Removal of hardness agents, calcium and magnesium, by natural and alkaline modified pumice stones in single and binary systems. Appl Surf Sci 274:295–305

    Article  CAS  Google Scholar 

  • Sepehr MN, Amrane A, Karimaian KA, Zarrabi M, Ghaffari HR (2014) Potential of waste pumice and surface modified pumice for hexavalent chromium removal: characterization, equilibrium, thermodynamic and kinetic study. J Taiwan Inst Chem Eng 45:635–647

    Article  CAS  Google Scholar 

  • Sharma R, Singh N, Gupta A, Tiwari S, Tiwari SK, Dhakate SR (2014) Electrospun chitosan-polyvinyl alcohol composite nanofibers loaded with cerium for efficient removal of arsenic from contaminated water. J Mater Chem A 2:16669–16677

    Article  CAS  Google Scholar 

  • Singh TS, Pant KK (2004) Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina. Sep Purif Technol 36:139–147

    Article  CAS  Google Scholar 

  • Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247–270

    Article  CAS  Google Scholar 

  • Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74:289–299

    Article  CAS  Google Scholar 

  • Tokunaga S, Wasay SA, Park S-W (1997) Removal of arsenic(V) ion from aqueous solutions by lanthanum compounds. Water Sci Technol 35:71–78

    CAS  Google Scholar 

  • Viswanathan N, Sairam Sundaram C, Meenakshi S (2009) Development of multifunctional chitosan beads for fluoride removal. J Hazard Mater 167:325–331

    Article  CAS  Google Scholar 

  • Wang YX, Duan JM, Li W, Beecham S, Mulcahy D (2016) Aqueous arsenite removal by simultaneous ultraviolet photocatalytic oxidation-coagulation of titanium sulfate. J Hazard Mater 303:162–170

    Article  CAS  Google Scholar 

  • WHO (2006) Guidelines for drinking-water quality—first addendum to third edition, vol 1. WHO Press, Switzerland ISBN 92, 154696

    Google Scholar 

  • Xie LY, Liu P, Zheng ZY, Weng SX, Huang JH (2016) Morphology engineering of V2O5/TiO2 nanocomposites with enhanced visible light-driven photofunctions for arsenic removal. Appl Catal B Environ 184:347–354

    Article  CAS  Google Scholar 

  • Yazdani M, Tuudjarvi T, Bhatnagar A, Vahala R (2016) Adsorptive removal of arsenic(V) from aqueous phase by feldspars: kinetics, mechanism, and thermodynamic aspects of adsorption. J Mol Liq 214:149–156

    Article  CAS  Google Scholar 

  • Zhang Y, Yang M, Huang X (2003) Arsenic(V) removal with a Ce(IV)-doped iron oxide adsorbent. Chemosphere 51:945–952

    Article  CAS  Google Scholar 

  • Zhang Y, Dou XM, Zhao B, Yang M, Takayama T, Kato S (2010) Removal of arsenic by a granular Fe-Ce oxide adsorbent: fabrication conditions and performance. Chem Eng J 162:164–170

    Article  CAS  Google Scholar 

  • Zhong LS, Hu JS, Cao AM, Liu Q, Song WG, Wan LJ (2007) 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chem Mater 19:1648–1655

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author would like to thank Ghent University, Belgium, for the financial support through a Special Research Fund (BOF) fellowship. We are grateful to Elien Wallaert, Department of Materials Science and Engineering, Ghent University, Belgium, for the SEM and EDX measurements. The authors are also thankful to Tom Planckaert and Karen Leus, Department of Inorganic and Physical Chemistry, Ghent University, Belgium, for the BET analysis of the adsorbents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsegaye Girma Asere.

Additional information

Responsible editor: Guilherme L. Dotto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asere, T.G., Verbeken, K., Tessema, D.A. et al. Adsorption of As(III) versus As(V) from aqueous solutions by cerium-loaded volcanic rocks. Environ Sci Pollut Res 24, 20446–20458 (2017). https://doi.org/10.1007/s11356-017-9692-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9692-z

Keywords

Navigation