Skip to main content

Advertisement

Log in

Effects of pharmaceuticals and personal care products on marine organisms: from single-species studies to an ecosystem-based approach

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pharmaceuticals and personal care products (PPCPs) are contaminants of emerging concern that are increasing in use and have demonstrated negative effects on aquatic organisms. There is a growing body of literature reporting the effects of PPCPs on freshwater organisms, but studies on the effects of PPCPs to marine and estuarine organisms are limited. Among effect studies, the vast majority examines subcellular or cellular effects, with far fewer studies examining organismal- and community-level effects. We reviewed the current published literature on marine and estuarine algae, invertebrates, fish, and mammals exposed to PPCPs, in order to expand upon current reviews. This paper builds on previous reviews of PPCP contamination in marine environments, filling prior literature gaps and adding consideration of ecosystem function and level of knowledge across marine habitat types. Finally, we reviewed and compiled data gaps suggested by current researchers and reviewers and propose a multi-level model to expand the focus of current PPCP research beyond laboratory studies. This model includes examination of direct ecological effects including food web and disease dynamics, biodiversity, community composition, and other ecosystem-level indicators of contaminant-driven change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguirre-Martínez GV, Buratti S, Fabbri E, et al. (2013a) Using lysosomal membrane stability of haemocytes in Ruditapes philippinarum as a biomarker of cellular stress to assess contamination by caffeine, ibuprofen, carbamazepine and novobiocin. J Environ Sci 25:1408–1418. doi:10.1016/S1001-0742(12)60207-1

    Article  CAS  Google Scholar 

  • Aguirre-Martínez GV, Buratti S, Fabbri E, et al. (2013b) Stability of lysosomal membrane in Carcinus maenas acts as a biomarker of exposure to pharmaceuticals. Environ Monit Assess. doi:10.1007/s10661-012-2827-2

    Google Scholar 

  • Aguirre-Martínez GV, Del Valls TA, Martín-Díaz ML (2013c) Early responses measured in the brachyuran crab Carcinus maenas exposed to carbamazepine and novobiocin: application of a 2-tier approach. Ecotoxicol Environ Saf. doi:10.1016/j.ecoenv.2013.07.002

    Google Scholar 

  • Almeida A, Calisto V, Esteves VI, et al. (2014) Presence of the pharmaceutical drug carbamazepine in coastal systems: effects on bivalves. Aquat Toxicol 156:74–87. doi:10.1016/j.aquatox.2014.08.002

    Article  CAS  Google Scholar 

  • Ankley GT, Brooks BW, Huggett DB, Sumpter JP (2007) Repeating history: pharmaceuticals in the environment. Environ Sci Technol 41:8211–8217

    Article  CAS  Google Scholar 

  • Anthony KRN, Marshall PA, Abdulla A, Beeden R, Bergh C, Black R, Eakin CM, Game ET, Gooch M, Graham NAJ, Green A, Heron S, van Hooidonk R, Knowland C, Mangubhai S, Marshall N, Maynard, JA, McGinnity P, McLeod E, Mumby Peter J, Nyström M, Obura D, Oliver J, Possingham HP, Pressey RL, Rowlands GP, Tamelander J, Wachenfeld D, Wear S (2015) Operationalizing resilience for adaptive coral reef management under global environmental change. Glob Change Biol 21:48–61. doi:10.1111/gcb.12700

  • Antunes SC, Freitas R, Figueira E, Gonçalves F, Nunes B (2013) Biochemical effects of acetaminophen in aquatic species: edible clams Venerupis decussata and Venerupis philippinarum. Environ Sci Pollut Res. doi:10.1007/s11356-013-1784-9

    Google Scholar 

  • Backhaus T, Porsbring T, Arrhenius Å, Brosche S, Johansson P, Blanck H (2011) Single-substance and mixture toxicity of five pharmaceuticals and personal care products to marine periphyton communities. Environ Toxicol. doi:10.1002/etc.586

    Google Scholar 

  • Banni M, Sforzini S, Franzellitti S, Oliveri C, Viarengo A, Fabbri E (2015) Molecular and cellular effects induced in Mytilus galloprovincialis treated with oxytetracycline at different temperatures. PLoS One. doi:10.1371/journal

    Google Scholar 

  • Bayen S, Zhang H, Desai MM, et al. (2013) Occurrence and distribution of pharmaceutically active and endocrine disrupting compounds in Singapore’s marine environment: influence of hydrodynamics and physical-chemical properties. Environ Pollut. doi:10.1016/j.envpol.2013.06.028

    Google Scholar 

  • Bidel F, Di Poi C, Imarazene B, et al. (2015) Pre-hatching fluoxetine-induced neurochemical, neurodevelopmental, and immunological changes in newly hatched cuttlefish. Environ. Sci. Pollut. Res

  • Billinghurst Z, Clare AS, Matsumura K, Depledge MH (2000) Induction of cypris major protein in barnacle larvae by exposure to 4-n-nonylphenol and 17β-oestradiol. Aquat Toxicol. doi:10.1016/S0166-445X(99)00018-1

    Google Scholar 

  • Brausch JM, Connors KA, Brooks BW, Rand GM (2012) Human pharmaceuticals in the aquatic environment: a review of recent toxicological studies and considerations for toxicity testing. Rev Environ Contam Toxicol 218:1–99. doi:10.1007/978-1-4614-3137-4

    CAS  Google Scholar 

  • Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82:1518–1532. doi:10.1016/j.chemosphere.2010.11.018

    Article  CAS  Google Scholar 

  • Breton R, Boxall A (2003) Pharmaceuticals and personal care products in the environment: regulatory drivers and research needs. QSAR Comb Sci 22:399–409. doi:10.1002/qsar.200390030

    Article  CAS  Google Scholar 

  • Brooks BW (2014) Fish on Prozac (and Zoloft) ten years later. Aquat Toxicol 151:61–67. doi:10.1016/j.aquatox.2014.01.007

    Article  CAS  Google Scholar 

  • Brooks BW, Ankley GT, Boxall ABA, Rudd MA (2013) Toward sustainable environmental quality: a call to prioritize global research needs. Integr Environ Assess Manag 9(2):179–180. doi:10.1002/ieam.1411

    Article  Google Scholar 

  • Canesi L, Borghi C, Ciacci C, Fabbri R, Vergani L, Gallo G (2007c) Bisphenol—a alters gene expression and functional parameters in molluscan hepatopancreas. Mol Cell Endocrinol 276:36–44. doi:10.1016/j.mce.2007.06.002

    Article  CAS  Google Scholar 

  • Canesi L, Borghi C, Ciacci C, Fabbri R, Lorussa LC, Marcomini A, Poiana G (2008) Short-term effects of environmentally relevant concentrations of EDC mixtures on Mytilus galloprovincialis digestive gland. Aquat Toxicol 87:272–279

    Article  CAS  Google Scholar 

  • Canesi L, Borghi C, Fabbri R, Ciacci C, Lorussa LC, Gallo G, Vergani L (2007b) Effects of 17β-estradiol on mussel digestive gland. Gen Comp Endocrinol 153:40–46. doi:10.1016/j.ygcen.2007.02.005

    Article  CAS  Google Scholar 

  • Canesi L, Ciacci C, Lorusso LC, Betti M, Gallo G, Pojana G, Marcomini A (2007a) Effects of Triclosan on Mytilus galloprovincialis hemocyte function and digestive gland enzyme activities: possible modes of action on non target organisms. Comp Biochem Physiol-C Toxicol Pharmacol. doi:10.1016/j.cbpc.2007.02.002

    Google Scholar 

  • Canesi L, Lorusso LC, Ciacci C, Betti M, Zampini M, Gallo G (2004) Environmental estrogens can affect the function of mussel hemocytes through rapid modulation of kinase pathways. Gen Comp Endocrinol 138:58–69. doi:10.1016/j.ygcen.2004.05.004

    Article  CAS  Google Scholar 

  • Canesi L, Lorusso LC, Ciacci C, Betti M, Rocchi M, Pojana G, Marcomini A (2007d) Immunomodulation of Mytilus hemocytes by individual estrogenic chemicals and environmentally relevant mixtures of estrogens: in vitro and in vivo studies. Aquat Toxicol 81:36–44. doi:10.1016/j.aquatox.2006.10.010

    Article  CAS  Google Scholar 

  • Christensen LJ, Korsgaard B, Bjerregaard P (1999) The effect of 4-nonylphenol on the synthesis of vitellogenin in the flounder Platichthys flesus. Aquat Toxicol 46:211–219

    Article  CAS  Google Scholar 

  • Christiansen T, Korsgaard B, Jespersen Å (1998) Effects of nonylphenol and 17-oestradiol on vitellogenin synthesis, testicular structure and cytology in male eelpout Zoarces viviparus. J Exp Biol 201(Pt 2):179–192

    CAS  Google Scholar 

  • Claessens M, Vanhaecke L, Wille K, Janssen CR (2013) Emerging contaminants in Belgian marine waters: single toxicant and mixture risks of pharmaceuticals. Mar Pollut Bull. doi:10.1016/j.marpolbul.2013.03.039

    Google Scholar 

  • Cooper ER, Siewicki TC, Phillips K (2008) Preliminary risk assessment database and risk ranking of pharmaceuticals in the environment. doi: 10.1016/j.scitotenv.2008.02.061

  • Cortez FS, Pereira CDSP, Santos AR, et al. (2012) Biological effects of environmentally relevant concentrations of the pharmaceutical Triclosan in the marine mussel Perna perna (Linnaeus, 1758). Environ. Pollut

  • Couper JM, Leise EM (1996) Serotonin injections induce metamorphosis in larvae of the gastropod mollusc Ilyanassa obsoleta. Biol Bull. doi:10.2307/1542921

    Google Scholar 

  • Damasio J, Barcelo D, Brix R, Postigo C, Gros M, Petrovic M, Sabater S, Gausch H, Lopez de Alda M, Barata C (2011) Are pharmaceuticals more harmful than other pollutants to aquatic invertebrate species: a hypothesis tested using multi-biomarker and multi-species responses in field collected and transplanted organisms. Chemosphere. doi:10.1016/j.chemosphere.2011.07.058

    Google Scholar 

  • Danovaro R, Bongiorni L, Corinaldesi C, et al. (2008) Sunscreens cause coral bleaching by promoting viral infections. Environ Health Perspect. doi:10.1289/ehp.10966

    Google Scholar 

  • Daughton C (2004) PPCPs in the environment: future research—beginning with the end always in mind. Pharm. Environ

  • Daughton CG, Brooks BW (2011) Active pharmaceutical ingredients and aquatic organisms. In: Beyer WN, Meador JP (eds) Environ. Contam. Biota, second. CRC Press, Taylor and Francis, Boca Raton, FL, pp. 287–348

    Chapter  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938

    Article  CAS  Google Scholar 

  • Del Rey ZR, Granek EF, Buckley BA (2011) Expression of HSP70 in Mytilus californianus following exposure to caffeine. Ecotoxicology. doi:10.1007/s10646-011-0649-6

    Google Scholar 

  • DeLorenzo ME, Fleming J (2008) Individual and mixture effects of selected pharmaceuticals and personal care products on the marine phytoplankton species Dunaliella tertiolecta. Arch Environ Contam Toxicol. doi:10.1007/s00244-007-9032-2

    Google Scholar 

  • Di Poi C, Darmaillacq A-S, Dickel L, Boulouard M, Bellanger C (2013) Effects of perinatal exposure to waterborne fluoxetine on memory processing in the cuttlefish Sepia officinalis. Aquat Toxicol 132-133:84–91. doi:10.1016/j.aquatox.2013.02.004

    Article  CAS  Google Scholar 

  • Di Poi C, Bidel F, Dickel L, Bellanger C (2014a) Cryptic and biochemical responses of young cuttlefish Sepia officinalis exposed to environmentally relevant concentrations of fluoxetine. Aquat Toxicol 151:36–45. doi:10.1016/j.aquatox.2013.12.026

    Article  CAS  Google Scholar 

  • Di Poi C, Evariste L, Seguin A, Mottier A, Pedeulucq J, Lebel J-M, Serpentini A, Budzinski H, Costil K (2014b) Sub-chronic exposure to fluoxetine in juvenile oysters (Crassostrea gigas): uptake and biological effects. Environmental Science and Pollution Research

  • Dussault EB, Balakrishnan VK, Sverko E, et al. (2008) Toxicity of human pharmaceuticals and personal care products to benthic invertebrates. Environ Toxicol Chem

  • Eggen RI, Behra R, Burkhardt-Holm P, et al. (2004) Challenges in ecotoxicology. Environ Sci Technol 38:58A–64A. doi:10.1021/es040349c

    Article  CAS  Google Scholar 

  • Ericson H, Thorsén G, Kumblad L (2010) Physiological effects of diclofenac, ibuprofen and propranolol on Baltic Sea blue mussels. Aquat Toxicol 99:223–231. doi:10.1016/j.aquatox.2010.04.017

    Article  CAS  Google Scholar 

  • Erikkson Wiklund A-K, Oskarsson H, Thorsén G, Kumblad L (2011) Behavioural and physiological responses to pharmaceutical exposure in macroalgae and grazers from a Baltic Sea littoral community. Aquat Biol 14:29–39. doi:10.3354/ab00380

    Article  Google Scholar 

  • Fabbri E (2015) Pharmaceuticals in the environment: expected and unexpected effects on aquatic fauna. Ann N Y Acad Sci. doi:10.1111/nyas.12605

    Google Scholar 

  • Fabbri E, Franzellitti S (2015) Human pharmaceuticals in the marine environment: focus on exposure and biological effects in animal species. Environ Toxicol Chem. doi:10.1002/etc.3131

    Google Scholar 

  • Fair PA, Lee HB, Adams J, et al. (2009) Occurrence of triclosan in plasma of wild Atlantic bottlenose dolphins (Tursiops truncatus) and in their environment. Environ Pollut 157:2248–2254. doi:10.1016/j.envpol.2009.04.002

    Article  CAS  Google Scholar 

  • Federal Geographic Data Committee. 2012. Coastal and Marine Ecological Classification Standard. Accessed February 23rd, 2016 from https://coast.noaa.gov/digitalcoast/sites/default/files/files/publications/14052013/CMECS_Version%20_4_Final_for_FGDC.pdf

  • Fent K, Weston A, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159. doi:10.1016/j.aquatox.2005.09.009

    Article  CAS  Google Scholar 

  • Fong PP, Bury TB, Dworkin-Brodsky AD, Jasion CM, Kell RC (2015) The antidepressants venlafaxine (“Effexor”) and fluoxetine (“Prozac”) produce different effects on locomotion in two species of marine snail, the oyster drill (Urosalpinx cinerea) and the starsnail (Lithopoma americanum). Mar Environ Res 103:89–94. doi:10.1016/j.marenvres.2014.11.010

    Article  CAS  Google Scholar 

  • Fong PP, Molnar N (2013) Antidepressants cause foot detachment from substrate in five species of marine snail. Mar Environ Res. doi:10.1016/j.marenvres.2012.11.004

    Google Scholar 

  • Fong PP, Molnar N (2008) Norfluoxetine induces spawning and parturition in estuarine and freshwater bivalves. B Environ Contam Tox.

  • Forbes VE, Palmqvist A, Bach L (2006) The use and misuse of biomarkers in ecotoxicology. Environ Toxicol Chem 25:272–280. doi:10.1897/05-257R.1

    Article  CAS  Google Scholar 

  • Franzellitti S, Buratti S, Valbonesi P, Capuzzo A, Fabbri E (2011) The beta-blocker propranolol affects cAMP-dependent signaling and induces the stress response in Mediterranean mussels, Mytilus galloprovincialis. Aquat Toxicol 101:299–308. doi:10.1016/j.aquatox.2010.11.001

    Article  CAS  Google Scholar 

  • Franzellitti S, Buratti S, Valbonesi P, Fabbri E (2013) The mode of action (MOA) approach reveals interactive effects of environmental pharmaceuticals on Mytilus galloprovincialis. Aquat Toxicol 140:249–256. doi:10.1016/j.aquatox.2013.06.005

    Article  CAS  Google Scholar 

  • Franzellitti S, Buratti S, Capolupo M, Du B, Haddad SP, Chambliss CK, Brooks BW, Fabbri E (2014) An exploratory investigation of various modes of action and potential adverse outcomes of fluoxetine in marine mussels. Aquat Toxicol 151:14–26. doi:10.1016/j.aquatox.2013.11.016

    Article  CAS  Google Scholar 

  • Franzellitti S, Buratti S, Du B, Haddad SP, Chambliss K, Brooks BW, Fabbri E (2015) A multibiomarker approach to explore interactive effects of propranolol and fluoxetine in marine mussels. Environ Pollut. doi:10.1016/j.envpol.2015.05.020

    Google Scholar 

  • Gago-Ferrero P, Alonso MB, Bertozzi CP, et al. (2013) First determination of UV filters in marine mammals. Octocrylene levels in Franciscana dolphins. Environ Sci Technol 47:5619–5625. doi:10.1021/es400675y

    Article  CAS  Google Scholar 

  • Garcia RN, Chung KW, Delorenzo ME, Curran MC (2014) Individual and mixture effects of caffeine and sulfamethoxazole on the daggerblade grass shrimp Palaemonetes pugio following maternal exposure. Environ Toxicol Chem. doi:10.1002/etc.2669

    Google Scholar 

  • Gaume B, Bourgougnon N, Auzoux-Bordenave S, Roig B, Le Bot B, Bedoux G (2012) In vitro effects of triclosan and methyl-triclosan on the marine gastropod Haliotis tuberculata. Comp Biochem Physiol-C Toxicol Pharmacol 156:87–94. doi:10.1016/j.cbpc.2012.04.006

    Article  CAS  Google Scholar 

  • Gaw S, Thomas KV, Hutchinson TH (2014) Sources, impacts and trends of pharmaceuticals in the marine and coastal environment. Philos Trans R Soc B. doi:10.1098/rstb.2013.0572

    Google Scholar 

  • Gelsleichter J, Szabo NJ (2013) Uptake of human pharmaceuticals in bull sharks (Carcharhinus leucas) inhabiting a wastewater-impacted river. Sci Total Environ. doi:10.1016/j.scitotenv.2013.03.078

    Google Scholar 

  • Ginebreda A, Munoz I, Lopez de Alda M, Brix R, Lopez-Doval J, Barcelo D (2010) Environmental risk assessment of pharmaceuticals in rivers: relationships between hazard indexes and aquatic invertebrate density indexes in the Llobregat River (NE Spain). Environ Int. doi:10.1016/j.envint.2009.10.003

    Google Scholar 

  • Glöckner FO, Stal LJ, Sandaa R-A, Gasol JM, O’Gara F, Hernandez F, Labrenz M, Stoica E, Varela MM, Bordalo A, Pitta P (2012) In: Calewaert JB, McDonough N (eds) Marine microbial diversity and its role in ecosystem functioning and environmental change. Marine Board Position Paper 17. Marine Board-ESF, Ostend, Belgium

    Google Scholar 

  • Gomez E, Bachelot M, Boillot C, Munaron D, Chiron S, Casellas C, Fenet H (2012) Bioconcentration of two pharmaceuticals (benzodiazepines) and two personal care products (UV filters) in marine mussels (Mytilus galloprovincialis) under controlled laboratory conditions. Environ Sci Pollut Res. doi:10.1007/s11356-012-0964-3

    Google Scholar 

  • Gonzalez Alonso S, Catala M, Romo Maroto R, Rodriguez Gil J, Gil de Miguel A, Valcarcel Y (2010) Pollution by psychoactive pharmaceuticals in the rivers of Madrid metropolitan area (Spain). Environ Int. doi:10.1016/j.envint.2009.11.004

    Google Scholar 

  • Gonzalez-Rey M, Bebianno MJ (2012) Does non-steroidal anti-inflammatory (NSAID) ibuprofen induce antioxidant stress and endocrine disruption in mussel Mytilus galloprovincialis? Environ Toxicol Pharmacol. doi:10.1016/j.etap.2011.12.017

    Google Scholar 

  • Gonzalez-Rey M, Bebianno MJ (2014) Effects of non-steroidal anti-inflammatory drug (NSAID) diclofenac exposure in mussel Mytilus galloprovincialis. Aquat Toxicol 148

  • Gonzalez-Rey M, Mattos JJ, Piazza CE, et al. (2014) Effects of active pharmaceutical ingredients mixtures in mussel Mytilus galloprovincialis. Aquat Toxicol. doi:10.1016/j.aquatox.2014.02.006

    Google Scholar 

  • Granek EF, Conn KE, Nilsen EB, Pillsbury L, Strecker AL, Rumrill SS, Fish W (2016) Spatial and temporal variability of contaminants within estuarine sediments and native Olympia oysters: a contrast between a developed and an underdeveloped estuary. Sci Total Environ. doi:10.1016/j.scitotenv.2016.03.043

    Google Scholar 

  • Granmo A, Ekelund R, Magnusson K, Berggren M (1989) Lethal and sublethal toxicity of 4-nonylphenol to the common mussel (Mytilus edulis L.). Environ Pollut. doi:10.1016/0269-7491(89)90100-0

    Google Scholar 

  • Gu Q, Dillon CF, Burt VL (2010) Prescription drug use continues to increase: US prescription drug data for 2007-2008. NCHS Data Brief 42:1–8

    Google Scholar 

  • Guler T, Ford AT (2008) Anti-depressants make amphipods see the light. Aquat Toxicol. doi:10.1016/j.aquatox.2010.05.019

    Google Scholar 

  • Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17. doi:10.1016/S0378-4274(02)00041-3

    Article  CAS  Google Scholar 

  • Honkoop PJC, Luttikhuizen PC, Piersma T (1999) Experimentally extending the spawning season of a marine bivalve using temperature change and fluoxetine as synergistic triggers. Mar Ecol Prog Ser 180:297–300

    Article  Google Scholar 

  • Janer G, Lavado R, Thibaut R, Porte C (2005) Effects of 17β-estradiol exposure in the mussel Mytilus galloprovincialis: a possible regulating role for steroid acyltransferases. Aquat Toxicol. doi:10.1016/j.aquatox.2005.01.012

    Google Scholar 

  • Johansson HC, Janmar L, Backhaus T (2014) Triclosan causes toxic effects to algae in marine biofilms, but does not inhibit the metabolic activity of marine biofilm bacteria. Mar Pollut Bull. doi:10.1016/j.marpolbul.2014.05.010

    Google Scholar 

  • Jones OA, Voulvoulis N, Lester JN (2004) Potential ecological and human health risks associated with the presence of pharmaceutically active compounds in the aquatic environment. Crit Rev Toxicol 34:335–350. doi:10.1080/10408440490464697

    Article  CAS  Google Scholar 

  • Koutsogiannaki S, Franzellitti S, Fabbri E, Kaloyianni M (2014) Oxidative stress parameters induced by exposure to either cadmium or 17β-estradiol on Mytilus galloprovincialis hemocytes. The role of signaling molecules. Aquat Toxicol 146:186–195. doi:10.1016/j.aquatox.2013.11.005

    Article  CAS  Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75:417–434. doi:10.1016/j.chemosphere.2008.11.086

    Article  CAS  Google Scholar 

  • Lacaze E, Pedelucq J, Fortier M, Brousseau P, Auffret M, Budzinski H, Fournier M (2015) Genotoxic and immunotoxic potential effects of selected psychotropic drugs and antibiotics on blue mussel (Mytilus edulis) hemocytes. doi: 10.1016/j.envpol.2015.03.025

  • Lagesson A, Fahlman J, Brodin T, Fick J, Jonsson M, Byström P, Klaminder J (2016) Bioaccumulation of five pharmaceuticals at multiple trophic levels in an aquatic food web—insights from a field experiment. Sci Total Environ. doi:10.1016/j.scitotenv.2016.05.206

    Google Scholar 

  • Latullier A, Minguez L, Costil K, Halm-Lameille MP, Lebel JM, Serpentini A (2014) In vitro effect of five pharmaceuticals on the viability of the European abalone hemocytes , Haliotis tuberculata. J Xenobiotics. doi:10.4081/xeno.2014.4900

    Google Scholar 

  • Lee WY, Arnold CR (1983) Chronic toxicity of ocean-dumped pharmaceutical wastes to the marine amphipod Amphithoe valida. Mar Pollut Bull. doi:10.1016/0025-326X(83)90070-X

    Google Scholar 

  • Liu J-L, Wong M-H (2013) Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int 59:208–224. doi:10.1016/j.envint.2013.06.012

    Article  CAS  Google Scholar 

  • Maranho L, Garrido-Perez M, DelValls T, Martin-Diaz M (2015b) Suitability of standardized acute toxicity tests for marine sediment assessment: pharmaceutical contamination. Water Air Soil Pollut. doi:10.1007/s11270-014-2273-6

    Google Scholar 

  • Maranho L, Moreira L, Baena-Nogueras R, et al. (2014a) A candidate short-term toxicity test using Ampelisca brevicornia to assess sublethal responses to pharmaceuticals bound to marine sediments. Arch Environ Contam Toxicol. doi:10.1007/s00244-014-0080-0

    Google Scholar 

  • Maranho LA, André C, Delvalls TA, et al. (2015a) Toxicological evaluation of sediment samples spiked with human pharmaceutical products: energy status and neuroendocrine effects in marine polychaetes Hediste diversicolor. Ecotoxicol Environ Saf 118:27–36. doi:10.1016/j.ecoenv.2015.04.010

    Article  CAS  Google Scholar 

  • Maranho LA, Baena-Nogueras RM, Lara-Martin PA, DelValls TA, Martin-Diaz ML (2014b) Bioavailability, oxidative stress, neurotoxicity, and genotoxicity of pharmaceuticals bound to marine sediments. The use of polychaete Hediste diversicolor as bioindicator species. Environ Res. doi:10.1016/j.envres.2014.08.014

    Google Scholar 

  • Martin-Diaz L, Franzellitti S, Buratti S, et al. (2009) Effects of environmental concentrations of the antiepileptic drug carbamazepine on biomarkers and cAMP-mediated cell signaling in the mussel Mytilus galloprovincialis. Aquat Toxicol 94:177–185. doi:10.1016/j.aquatox.2009.06.015

    Article  CAS  Google Scholar 

  • Matozzo V, Marin MG (2005) Can 4-nonylphenol induce vitellogenin-like proteins in the clam Tapes philippinarum? Environ Res 97:43–49. doi:10.1016/j.envres.2004.03.002

    Article  CAS  Google Scholar 

  • Matozzo V, Franchi N, Loriano B (2014) In vitro effects of the nonsteroidal anti-inflammatory drug, ibuprofen, on the immune parameters on the colonial ascidian Botryllus schlosseri. Toxicol in Vitro. doi:10.1016/j.tiv.2014.02.006

    Google Scholar 

  • McDonald MD, Gonzalez A, Sloman KA (2011) Higher levels of aggression are observed in socially dominant toadfish treated with the selective serotonin reuptake inhibitor, fluoxetine. Comp Biochem Physiol-C Toxicol Pharmacol. doi:10.1016/j.cbpc.2010.09.006

    Google Scholar 

  • McEneff G, Barron L, Kelleher B, et al. (2014) A year-long study of the spatial occurrence and relative distribution of pharmaceutical residues in sewage effluent, receiving marine waters and marine bivalves. Sci Total Environ. doi:10.1016/j.scitotenv.2013.12.123

    Google Scholar 

  • Meador JP, Yeh A, Young G, Gallagher EP (2016) Contaminants of emerging concern in a large temperate estuary. Environ Pollut. doi:10.1016/j.envpol.2016.01.088

    Google Scholar 

  • Mesquita SR, Guilhermino L, Guimarães L (2011) Biochemical and locomotor responses of Carcinus maenas exposed to the serotonin reuptake inhibitor fluoxetine. Chemosphere 85:967–976. doi:10.1016/j.chemosphere.2011.06.067

    Article  CAS  Google Scholar 

  • Milan M, Pauletto M, Patarnello T, et al. (2013) Gene transcription and biomarker responses in the clam Ruditapes philippinarum after exposure to ibuprofen. Aquat Toxicol. doi:10.1016/j.aquatox.2012.10.007

    Google Scholar 

  • Minguez L, Halm-Lemeille M-P, Costil K, Bureau R, Lebel J-M, Serpentini A (2014) Assessment of cytotoxic and immunomodulatory properties of four antidepressants on primary cultures of abalone hemocytes (Haliotis tuberculata). Aquat Toxicol 153:3–11. doi:10.1016/j.aquatox.2013.10.020

    Article  CAS  Google Scholar 

  • Morando MB, Medeiros LR, McDonald MD (2009) Fluoxetine treatment affects nitrogen waste excretion and osmoregulation in a marine teleost fish. Aquat Toxicol. doi:10.1016/j.aquatox.2009.10.015

    Google Scholar 

  • Moreno-González R, Rodríguez-Mozaz S, Huerta B, Barceló D, León VM (2016) Do pharmaceuticals bioaccumulate in marine molluscs and fish from a coastal lagoon? Environ Res. doi:10.1016/j.envres.2016.01.001

    Google Scholar 

  • Munaron D, Tapie N, Budzinski H, Andral B, Gonzalez J (2012) Pharmaceuticals, alkylphenols and pesticides in Mediterranean coastal waters: results from a pilot survey using passive samplers. Estuar Coast Shelf Sci. doi:10.1016/j.ecss.2011.09.009

    Google Scholar 

  • Nagtegaal M, Ternes TA, Baumann W, Nagel R (1997) Detection of UV-sunscreen agents in water and fish of the Meerfelder Maar the Eifel, Germany. Z fur Umweltchem Okotox 9:79–86

    Article  CAS  Google Scholar 

  • Nakata H (2005) Occurrence of synthetic musk fragrances in marine mammals and sharks from Japanese coastal waters. Environ Sci Technol 39:3430–3434. doi:10.1021/es050199l

    Article  CAS  Google Scholar 

  • Nunes B, Carvalho F, Guilhermino L (2005) Acute toxicity of widely used pharmaceuticals in aquatic species: Gambusia holbrooki, Artemia parthenogenetica and Tetraselmis chuii. Ecotoxicol Environ Saf 61:413–419. doi:10.1016/j.ecoenv.2004.08.010

    Article  CAS  Google Scholar 

  • Oskarsson H, Eriksson Wiklund A-K, Lindh K, Kumblad L (2012) Effect studies of human pharmaceuticals on Fucus vesiculosus and Gammarus spp. Mar Environ Res 74:1–8. doi:10.1016/j.marenvres.2011.11.001

    Article  CAS  Google Scholar 

  • Oskarsson H, Eriksson Wiklund A-K, Thorsén G, Danielsson G, Kumblad L (2014) Community interactions modify the effects of pharmaceutical exposure: a microcosm study on responses to propranolol in Baltic Sea coastal organisms. PLoS One. doi:10.1371/journal.pone.0093774

    Google Scholar 

  • Perreault HAN, Semsar K, Godwin J (2003) Fluoxetine treatment decreases territorial aggression in a coral reef fish. Physiol Behav 79(4–5):719–724. doi:10.1016/S0031-9384(03)00211-7

    Article  CAS  Google Scholar 

  • Peters, JR (2016) Pharmaceutical contaminants as stressors on rocky intertidal and estuarine organisms: a case study of fluoxetine. Dissertation, Portland State University

  • Peters JR, Granek EF (2016) Long term exposure to fluoxetine reduces growth and reproductive potential in the dominant rocky intertidal mussel, Mytilus californianus. Sci Total Environ 545-546:621–628

    Article  CAS  Google Scholar 

  • Picot Groz M, Martinez Bueno MJ, Rosain D, et al. (2014) Detection of emerging contaminants (UV filters, UV stabilizers and musks) in marine mussels from Portuguese coast by QuEChERS extraction and GC-MS/MS. Sci Total Environ. doi:10.1016/j.scitotenv.2014.05.062

    Google Scholar 

  • Ramaswamy BR, Kim J-W, Isobe T, et al. (2011) Determination of preservative and antimicrobial compounds in fish from Manila Bay, Philippines using ultra high performance liquid chromatography tandem mass spectrometry, and assessment of human dietary exposure. J Hazard Mater 192:1739–1745. doi:10.1016/j.jhazmat.2011.07.006

    Article  CAS  Google Scholar 

  • Ramirez AJ, Brain RA, Usenko S, et al. (2009) Occurrence of pharmaceuticals and personal care products in fish: results of a national pilot study in the United States 28:2587–2597.

  • Reichmuth JM, Roudez R, Glover T, Weis JS (2009) Differences in prey capture behavior in populations of blue crab (Callinectes sapidus Rathbun) from contaminated and clean estuaries in New Jersey. Estuar Coasts. doi:10.1007/s12237-008-9130-z

    Google Scholar 

  • Ribalta C, Solé M (2014) In vitro interaction of emerging contaminants with the cytochrome P450 system of Mediterranean deep-sea fish. Environ Sci Technol. doi:10.1021/es5029603

    Google Scholar 

  • Ribeiro S, Torres T, Martins R, Santos MM (2015) Toxicity screening of diclofenac, propranolol, sertraline and simvastatin using Danio rerio and Paracentrotus lividus embryo bioassays. Ecotoxicol Environ Saf 114:67–74. doi:10.1016/j.ecoenv.2015.01.008

    Article  CAS  Google Scholar 

  • Rodriguez Del Rey Z, Granek EF, Buckley BA (2011) Expression of HSP70 in Mytilus californianus following exposure to caffeine. Ecotoxicology. doi:10.1007/s10646-011-0649-6

    Google Scholar 

  • Rudd MA, Ankley GT, Boxall AB, Brooks BW (2014) International scientists’ priorities for research on pharmaceutical and personal care products in the environment. Integr Environ Assess Manag 10:546–587

    Article  Google Scholar 

  • Rüdel H, Böhmer W, Schröter-Kermani C (2006) Retrospective monitoring of synthetic musk compounds in aquatic biota from German rivers and coastal areas. J Environ Monit 8:812–823. doi:10.1039/b602389b

    Article  Google Scholar 

  • Saavedra L, Leonardi M, Morin V, Quinones R (2012) Induction of vitellogenin-like lipoproteins in the mussel Aulacomya ater under exposure to 17β-estradiol. Rev Biol Mar Oceanogr 47:429–438. doi:10.4067/S0718-19572012000300006

    Article  Google Scholar 

  • Schmidt W, O’Rourke K, Hernan R, Quinn B (2011) Effects of the pharmaceuticals gemfibrozil and diclofenac on the marine mussel (Mytilus spp.) and their comparison with standardized toxicity tests. Mar Pollut Bull. doi:10.1016/j.marpolbul.2011.04.043

    Google Scholar 

  • Semsar K, Perreault HA, Godwin J (2004) Fluoxetine-treated male wrasses exhibit low AVT expression. Brain Res 1029(2):141–147

    Article  CAS  Google Scholar 

  • Solé M, Shaw JP, Frickers PE, Readman JW, Hutchinson TH (2010) Effects on feeding rate and biomarker responses of marine mussels experimentally exposed to propranolol and acetaminophen. Anal Bioanal Chem 396:649–656. doi:10.1007/s00216-009-3182-1

    Article  CAS  Google Scholar 

  • Togola A, Budzinski H (2008) Multi-residue analysis of pharmaceutical compounds in aqueous samples. J Chromatogr A. doi:10.1016/j.chroma.2007.10.105

    Google Scholar 

  • UNEP (2006) Marine and coastal ecosystems and human well-being: a synthesis report based on the findings of the Millennium Ecosystem Assessment. UNEP. 76 pp

  • Walker CH, Hopkin SP, Sibly RM, Peakall DB (2001) Principles of ecotoxicology, second. Taylor and Francis, London

    Google Scholar 

  • Walther G-R, Post E, Convey P, et al. (2002) Ecological responses to recent climate change. Nature. doi:10.1038/416389a

    Google Scholar 

Download references

Acknowledgments

The work conducted for this paper was supported by funding from the Oregon Community Foundation’s 2013–14 Katherine Bisbee II Grant and Oregon Sea Grant Contaminants Grant #NA10OAR4170059. This paper benefited from the insights, assistance, and edits provided by Dr. Eugene Foster, Joey Peters, Konrad Miziolek, and three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elise F. Granek.

Additional information

Responsible editor: Cinta Porte

Electronic supplementary material

ESM 1

(XLSX 41.2 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prichard, E., Granek, E.F. Effects of pharmaceuticals and personal care products on marine organisms: from single-species studies to an ecosystem-based approach. Environ Sci Pollut Res 23, 22365–22384 (2016). https://doi.org/10.1007/s11356-016-7282-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7282-0

Keywords

Navigation