Skip to main content
Log in

A chamber study on the reactions of O3, NO, NO2 and selected VOCs with a photocatalytically active cementitious coating material

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Chamber studies were performed to investigate the efficiency of a photocatalytically active cementitious coating material to depollute contaminated air. The results showed a photocatalytic effect on ozone (O3), proven by an increase of the geometric uptake coefficient from 5.2 × 10−6 for the inactive to 7.7 × 10−6 for the active material under irradiation. Measured first-order rate constants for nitrogen oxides (NOx) under irradiation are in the range of 2.6–5.9 × 10−4 s−1, which is significantly higher compared to the inactive material (7.3–9.7 × 10−5 s−1) demonstrating the photocatalytic effect. However, no significant photocatalytic degradation was observed for the studied volatile organic compounds (VOCs) toluene and isoprene resulting in only an upper limit uptake coefficient of 5.0 × 10−7 for both VOCs. In all experiments using the photocatalytically active material, a clear formation of small carbonyl (C1–C5) gas phase compounds was identified which is suggested to result from the photocatalytic degradation of organic additives. In contrast to the uptake observed for pure O3, during the experiments with NOx (≥50 % relative humidity), a clear photocatalytic formation of O3 was observed. For the material investigated, an empirically derived overall zero-order rate constant of k 0 (O3) ≈ 5 × 107 molecules cm−3 s−1 was determined. The results demonstrate the necessity of detailed studies of heterogeneous reactions on such surfaces under more complex simulated atmospheric conditions as enabled by simulation chambers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Águia C, Ângelo J, Madeira LM, Mendes A (2011) Photo-oxidation of NO using an exterior paint—screening of various commercial titania in powder pressed and paint films. J Environ Manage 92:1724–1732. doi:10.1016/j.jenvman.2011.02.010

    Article  Google Scholar 

  • Allen NS, Edge M, Sandoval G, Verran J, Stratton J, Maltby J (2005) Photocatalytic coatings for environmental applications. Photochem Photobiol 81:279–290. doi:10.1562/2004-07-01-ra-221.1

    Article  CAS  Google Scholar 

  • Ângelo J, Andrade L, Madeira LM, Mendes A (2013) An overview of photocatalysis phenomena applied to NOx abatement. J Environ Manage 129:522–539. doi:10.1016/j.jenvman.2013.08.006

    Article  Google Scholar 

  • Ao CH, Lee SC, Mak CL, Chan LY (2003) Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO2: promotion versus inhibition effect of NO. Appl Catal B-Environ 42:119–129. doi:10.1016/s0926-3373(02)00219-9

    Article  CAS  Google Scholar 

  • Ardizzone S, Bianchi CL, Cappelletti G, Naldoni A, Pirola C (2008) Photocatalytic degradation of toluene in the gas phase: relationship between surface species and catalyst features. Environ Sci Technol 42:6671–6676. doi:10.1021/es8009327

    Article  CAS  Google Scholar 

  • Auvinen J, Wirtanen L (2008) The influence of photocatalytic interior paints on indoor air quality. Atmos Environ 42:4101–4112. doi:10.1016/j.atmosenv.2008.01.031

    Article  CAS  Google Scholar 

  • Ballari MM, Brouwers HJH (2013) Full scale demonstration of air-purifying pavement. J Hazard Mater 254–255:406–414. doi:10.1016/j.jhazmat.2013.02.012

    Article  Google Scholar 

  • Ballari MM, Hunger M, Hüsken G, Brouwers HJH (2010a) Modelling and experimental study of the NOx photocatalytic degradation employing concrete pavement with titanium dioxide. Catal Today 151:71–76. doi:10.1016/j.cattod.2010.03.042

  • Ballari MM, Hunger M, Hüsken G, Brouwers HJH (2010b) NOx photocatalytic degradation employing concrete pavement containing titanium dioxide. Appl Catal B-Environ 95:245–254. doi:10.1016/j.apcatb.2010.01.002

  • Ballari MM, Yu QL, Brouwers HJH (2011) Experimental study of the NO and NO2 degradation by photocatalytically active concrete. Catal Today 161:175–180. doi:10.1016/j.cattod.2010.09.028

    Article  CAS  Google Scholar 

  • Bedjanian Y, El Zein A (2012) Interaction of NO2 with TiO2 surface under UV irradiation: products study. J Phys Chem A 116:1758–1764. doi:10.1021/jp210078b

    Article  CAS  Google Scholar 

  • Beeldens A (2008) Air purification by pavement blocks: final results of the research at the BRRC. Transport Research Arena Europe, Ljubljana

    Google Scholar 

  • Bianchi CL, Pirola C, Selli E, Biella S (2012) Photocatalytic NOx abatement: the role of the material supporting the TiO2 active layer. J Hazard Mater 211–212:203–207. doi:10.1016/j.jhazmat.2011.10.095

    Article  Google Scholar 

  • Boonen E et al (2015) Construction of a photocatalytic de-polluting field site in the Leopold II tunnel in Brussels. J Environ Manage 155:136–144. doi:10.1016/j.jenvman.2015.03.001

    Article  CAS  Google Scholar 

  • Chen J, Poon C-s (2009) Photocatalytic construction and building materials: from fundamentals to applications. Build Environ 44:1899–1906. doi:10.1016/j.buildenv.2009.01.002

    Article  Google Scholar 

  • Chen H, Stanier CO, Young MA, Grassian VH (2011a) A kinetic study of ozone decomposition on illuminated oxide surfaces. J Phys Chem A 115:11979–11987. doi:10.1021/jp208164v

  • Chen J, Kou S-c, Poon C-s (2011b) Photocatalytic cement-based materials: comparison of nitrogen oxides and toluene removal potentials and evaluation of self-cleaning performance. Build Environ 46:1827–1833. doi:10.1016/j.buildenv.2011.03.004

  • Chen H, Nanayakkara CE, Grassian VH (2012) Titanium dioxide photocatalysis in atmospheric chemistry. Chem Rev 112:5919–5948. doi:10.1021/cr3002092

    Article  CAS  Google Scholar 

  • de_Richter R, Caillol S (2011) Fighting global warming: the potential of photocatalysis against CO2, CH4, N2O, CFCs, tropospheric O3, BC and other major contributors to climate change. J Photoch Photobio C 12:1–19. doi:10.1016/j.jphotochemrev.2011.05.002

    Article  CAS  Google Scholar 

  • Debono O, Thevenet F, Gravejat P, Hequet V, Raillard C, Lecoq L, Locoge N (2011) Toluene photocatalytic oxidation at ppbv levels: kinetic investigation and carbon balance determination. Appl Catal B-Environ 106:600–608. doi:10.1016/j.apcatb.2011.06.021

    Article  CAS  Google Scholar 

  • Demeestere K, Dewulf J, De Witte B, Beeldens A, Van Langenhove H (2008) Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2. Build Environ 43:406–414. doi:10.1016/j.buildenv.2007.01.016

    Article  Google Scholar 

  • Devahasdin S, Fan C, Li K, Chen DH (2003) TiO2 photocatalytic oxidation of nitric oxide: transient behavior and reaction kinetics. J Photochem Photobio A 156:161–170. doi:10.1016/s1010-6030(03)00005-4

    Article  CAS  Google Scholar 

  • Dillert R, Engel A, Große J, Lindner P, Bahnemann DW (2013) Light intensity dependence of the kinetics of the photocatalytic oxidation of nitrogen(ii) oxide at the surface of TiO2. Phys Chem Chem Phys 15:20876–20886. doi:10.1039/c3cp54469a

    Article  CAS  Google Scholar 

  • Dylla H, Hassan MM, Osborn D (2012) Field evaluation of ability of photocatalytic concrete pavements to remove nitrogen oxides. Transport Res Rec, 154–160. doi:10.3141/2290-20

  • EEA (05/2014) Air quality in Europe—2014 report.. doi:10.2800/22847

  • El Zein A, Bedjanian Y (2012) Interaction of NO2 with TiO2 surface under UV irradiation: measurements of the uptake coefficient. Atmos Chem Phys 12:1013–1020. doi:10.5194/acp-12-1013-2012

    Article  Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower atmosphere. Academic, San Diego

    Google Scholar 

  • Folli A et al (2015) Field study of air purifying paving elements containing TiO2. Atmos Environ 107:44–51. doi:10.1016/j.atmosenv.2015.02.025

    Article  CAS  Google Scholar 

  • Gallus M et al (2015a) Photocatalytic de-pollution in the Leopold II tunnel in Brussels: NOx abatement results. Build Environ 84:125–133. doi:10.1016/j.buildenv.2014.10.032

  • Gallus M et al (2015b) Photocatalytic abatement results from a model street canyon. Environ Sci Pollut Res. doi:10.1007/s11356-015-4926-4

  • Gankanda A, Grassian VH (2014) Nitrate photochemistry on laboratory proxies of mineral dust aerosol: wavelength dependence and action spectra. J Phys Chem C 118:29117–29125. doi:10.1021/jp504399a

    Article  CAS  Google Scholar 

  • Guerrini GL (2012) Photocatalytic performances in a city tunnel in Rome: NOx monitoring results. Constr Build Mater 27:165–175. doi:10.1016/j.conbuildmat.2011.07.065

    Article  Google Scholar 

  • Guo M-Z, Ling T-C, Poon C-S (2013) Nano-TiO2-based architectural mortar for NO removal and bacteria inactivation: influence of coating and weathering conditions. Cement Concrete Comp 36:101–108. doi:10.1016/j.cemconcomp.2012.08.006

  • Gustafsson RJ, Orlov A, Griffiths PT, Cox RA, Lambert RM (2006) Reduction of NO2 to nitrous acid on illuminated titanium dioxide aerosol surfaces: implications for photocatalysis and atmospheric chemistry. Chem Commun, 3936–3938. doi:10.1039/b609005b

  • Hauchecorne B, Terrens D, Verbruggen S, Martens JA, Van Langenhove H, Demeestere K, Lenaerts S (2011) Elucidating the photocatalytic degradation pathway of acetaldehyde: an FTIR in situ study under atmospheric conditions. Appl Catal B-Environ 106:630–638. doi:10.1016/j.apcatb.2011.06.026

    Article  CAS  Google Scholar 

  • Herrmann J-M (2010) Fundamentals and misconceptions in photocatalysis. J Photochem Photobio A 216:85–93. doi:10.1016/j.jphotochem.2010.05.015

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. doi:10.1021/cr00033a004

    Article  CAS  Google Scholar 

  • Hüsken G, Hunger M, Brouwers HJH (2009) Experimental study of photocatalytic concrete products for air purification. Build Environ 44:2463–2474. doi:10.1016/j.buildenv.2009.04.010

    Article  Google Scholar 

  • Ifang S, Gallus M, Liedtke S, Kurtenbach R, Wiesen P, Kleffmann J (2014) Standardization methods for testing photo-catalytic air remediation materials: problems and solution. Atmos Environ 91:154–161. doi:10.1016/j.atmosenv.2014.04.001

    Article  CAS  Google Scholar 

  • Isidorov V, Klokova E, Povarov V, Kolkova S (1997) Photocatalysis on atmospheric aerosols: experimental studies and modeling. Catal Today 39:233–242. doi:10.1016/s0920-5861(97)00104-1

    Article  CAS  Google Scholar 

  • ISO22197-1 (2007) Fine ceramics (advanced ceramics, advanced technical ceramics)—test method for air-purification performance of semiconducting photocatalytic materials—part 1: removal of nitric oxide. Reference Number ISO 22197–1:2007(E), Switzerland

    Google Scholar 

  • Korologos CA, Philippopoulos CJ, Poulopoulos SG (2011) The effect of water presence on the photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase. Atmos Environ 45:7089–7095. doi:10.1016/j.atmosenv.2011.09.038

    Article  CAS  Google Scholar 

  • Langridge JM, Gustafsson RJ, Griffiths PT, Cox RA, Lambert RM, Jones RL (2009) Solar driven nitrous acid formation on building material surfaces containing titanium dioxide: a concern for air quality in urban areas? Atmos Environ 43:5128–5131. doi:10.1016/j.atmosenv.2009.06.046

    Article  CAS  Google Scholar 

  • Laufs S et al (2010) Conversion of nitrogen oxides on commercial photocatalytic dispersion paints. Atmos Environ 44:2341–2349. doi:10.1016/j.atmosenv.2010.03.038

  • Linsebigler AL, Lu GQ, Yates JT (1995) Photocatalysis on TiO2 surfaces—principles, mechanisms, and selected results. Chem Rev 95:735–758. doi:10.1021/cr00035a013

    Article  CAS  Google Scholar 

  • Ma J, Liu Y, Han C, Ma Q, Liu C, He H (2013) Review of heterogeneous photochemical reactions of NOy on aerosol—a possible daytime source of nitrous acid (HONO) in the atmosphere. J Environ Sci-China 25:326–334. doi:10.1016/s1001-0742(12)60093-x

    Article  CAS  Google Scholar 

  • Maggos T, Bartzis JG, Liakou M, Gobin C (2007a) Photocatalytic degradation of NOx gases using TiO2-containing paint: a real scale study. J Hazard Mater 146:668–673. doi:10.1016/j.jhazmat.2007.04.079

  • Maggos T, Plassais A, Bartzis JG, Vasilakos C, Moussiopoulos N, Bonafous L (2007b) Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels. Environ Monit Assess 136:35–44. doi:10.1007/s10661-007-9722-2

  • Martinez T, Bertron A, Ringot E, Escadeillas G (2011) Degradation of NO using photocatalytic coatings applied to different substrates. Build Environ 46:1808–1816. doi:10.1016/j.buildenv.2011.03.001

    Article  Google Scholar 

  • Martinez T, Bertron A, Escadeillas G, Ringot E, Simon V (2014) BTEX abatement by photocatalytic TiO2-bearing coatings applied to cement mortars. Build Environ 71:186–192. doi:10.1016/j.buildenv.2013.10.004

    Article  Google Scholar 

  • Mills A, Hill C, Robertson PKJ (2012) Overview of the current ISO tests for photocatalytic materials. J Photochem Photobio A 237:7–23. doi:10.1016/j.jphotochem.2012.02.024

    Article  CAS  Google Scholar 

  • Minero C, Bedini A, Minella M (2013) On the standardization of the photocatalytic gas/solid tests. Int J Chem React Eng 11:717–732. doi:10.1515/ijcre-2012-0045

    Google Scholar 

  • Mo J, Zhang Y, Xu Q, Lamson JJ, Zhao R (2009) Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos Environ 43:2229–2246. doi:10.1016/j.atmosenv.2009.01.034

    Article  CAS  Google Scholar 

  • Monge ME, D’Anna B, George C (2010a) Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces—an air quality remediation process? Phys Chem Chem Phys 12:8991–8998. doi:10.1039/b925785c

  • Monge ME et al (2010b) Ozone formation from illuminated titanium dioxide surfaces. J Am Chem Soc 132:8234–8235. doi:10.1021/ja1018755

  • Müller K et al (2006) Biogenic carbonyl compounds within and above a coniferous forest in Germany. Atmos Environ 40:81–91. doi:10.1016/j.atmosenv.2005.10.070

    Article  Google Scholar 

  • Nanayakkara CE, Jayaweera PM, Rubasinghege G, Baltrusaitis J, Grassian VH (2014) Surface photochemistry of adsorbed nitrate: the role of adsorbed water in the formation of reduced nitrogen species on α-Fe2O3 particle surfaces. J Phys Chem A 118:158–166. doi:10.1021/jp409017m

    Article  CAS  Google Scholar 

  • Ndour M, Conchon P, D’Anna B, Ka O, George C (2009) Photochemistry of mineral dust surface as a potential atmospheric renoxification process. Geophys Res Lett 36:L05816. doi:10.1029/2008gl036662

    Article  Google Scholar 

  • Nicolas M, Ndour M, Ka O, D’Anna B, George C (2009) Photochemistry of atmospheric dust: ozone decomposition on illuminated titanium dioxide. Environ Sci Technol 43:7437–7442. doi:10.1021/es901569d

    Article  CAS  Google Scholar 

  • Noguchi T, Fujishima A (1998) Photocatalytic degradation of gaseous formaldehyde using TiO2 film. Environ Sci Technol 32:3831–3833. doi:10.1021/es980299+

    Article  CAS  Google Scholar 

  • Obee TN, Brown RT (1995) TiO2 photocatalysis for indoor air applications—effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environ Sci Technol 29:1223–1231. doi:10.1021/es00005a013

    Article  CAS  Google Scholar 

  • Ohama Y, Van Gemert D (2011) Application of titanium dioxide photocatalysis to construction materials. state-of-the-art report of the RILEM technical commitee 194-TDP Report, vol. XII. Springer

    Book  Google Scholar 

  • Ohtani B, Zhang S-W, S-i N, Kagiya T (1992) Catalytic and photocatalytic decomposition of ozone at room temperature over titanium(IV) oxide. J Chem Soc Faraday T 88:1049–1053. doi:10.1039/ft9928801049

    Article  CAS  Google Scholar 

  • PhotoPAQ (2010–2014) European Life+ project PhotoPAQ., http://photopaq.ircelyon.univ-lyon1.fr/.07/01/2015

  • Pirola C, Boffito DC, Vitali S, Bianchi CL (2012) Photocatalytic coatings for building industry: study of 1 year of activity in the NOx degradation. J Coat Technol Res 9:453–458. doi:10.1007/s11998-011-9381-7

    Article  CAS  Google Scholar 

  • Poon CS, Cheung E (2007) NO removal efficiency of photocatalytic paving blocks prepared with recycled materials. Constr Build Mater 21:1746–1753. doi:10.1016/j.conbuildmat.2006.05.018

    Article  Google Scholar 

  • Ramirez AM, Demeestere K, De Belie N, Mäntylä T, Levänen E (2010) Titanium dioxide coated cementitious materials for air purifying purposes: preparation, characterization and toluene removal potential. Build Environ 45:832–838. doi:10.1016/j.buildenv.2009.09.003

    Article  Google Scholar 

  • Rosseler O et al (2013) Chemistry of NOx on TiO2 surfaces studied by ambient pressure xps: products, effect of UV irradiation, water, and coadsorbed K+. J Phys Chem Lett 4:536–541. doi:10.1021/jz302119g

    Article  CAS  Google Scholar 

  • Salthammer T, Fuhrmann F (2007) Photocatalytic surface reactions on indoor wall paint. Environ Sci Technol 41:6573–6578. doi:10.1021/es070057m

    Article  CAS  Google Scholar 

  • Sivachandiran L, Thevenet F, Gravejat P, Rousseau A (2013) Investigation of NO and NO2 adsorption mechanisms on TiO2 at room temperature. Appl Catal B-Environ 142–143:196–204. doi:10.1016/j.apcatb.2013.04.073

    Article  Google Scholar 

  • Sleiman M, Conchon P, Ferronato C, Chovelon J-M (2009) Photocatalytic oxidation of toluene at indoor air levels (ppbv): towards a better assessment of conversion, reaction intermediates and mineralization. Appl Catal B-Environ 86:159–165. doi:10.1016/j.apcatb.2008.08.003

    Article  CAS  Google Scholar 

  • Strini A, Cassese S, Schiavi L (2005) Measurement of benzene, toluene, ethylbenzene and o-xylene gas phase photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor. Appl Catal B-Environ 61:90–97. doi:10.1016/j.apcatb.2005.04.009

    Article  CAS  Google Scholar 

  • Uchiyama S, Inaba Y, Kunugita N (2012) Ozone removal in the collection of carbonyl compounds in air. J Chromatogr A 1229:293–297. doi:10.1016/j.chroma.2012.01.062

    Article  CAS  Google Scholar 

  • Zhang M, An T, Fu J, Sheng G, Wang X, Hu X, Ding X (2006) Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor. Chemosphere 64:423–431. doi:10.1016/j.chemosphere.2005.11.062

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the European Commission through the Life + grant LIFE 08 ENV/F/000487 PHOTOPAQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Herrmann.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mothes, F., Böge, O. & Herrmann, H. A chamber study on the reactions of O3, NO, NO2 and selected VOCs with a photocatalytically active cementitious coating material. Environ Sci Pollut Res 23, 15250–15261 (2016). https://doi.org/10.1007/s11356-016-6612-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6612-6

Keywords

Navigation