Skip to main content

Advertisement

Log in

Bioaccumulation and molecular effects of sediment-bound metals in zebrafish embryos

  • Danio rerio as a Model in Aquatic Toxicology and Sediment Research
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Predicting the bioavailability and effects of metals in sediments is of major concern in context with sediment risk assessment. This study aimed to investigate the bioavailability and molecular effects of metals spiked into riverine sediments to zebrafish (Danio rerio) embryos. Embryos were exposed to a natural and an artificial sediment spiked with cadmium (Cd), copper (Cu), nickel (Ni) and zinc (Zn) individually or as a mixture at concentrations ranging from 150 to 3000 mg/kg dry weight (dw) over 48 h, and uptake of metals was determined. Furthermore, transcript abundances of the metallothioneins MT1 and MT2, the metal-responsive element-binding transcription factor (MTF) and the genes sod1, hsp70 and hsp90α1 were measured as indicators of metal-induced or general cellular stress. D. rerio embryos accumulated metals from sediments at concentrations up to 100 times greater than those spiked to the sediment with the greatest bioaccumulation factor (BAF) for Cu from artificial sediment (275.4 ± 41.9 (SD)). Embryos accumulated greater concentrations of all metals from artificial than from natural sediment, and accumulation was greater when embryos were exposed to individual metals than when they were exposed to the mixture. Exposure of embryos to Zn or the mixture exhibited up to 30-fold greater transcript abundances of MT1, MT2 and hsp70 compared to controls which is related to significant uptake of Zn from the sediment. Further changes in transcript abundances could not be related to a significant uptake of metals from sediments. These studies reveal that metals from spiked sediments are bioavailable to D. rerio embryos directly exposed to sediments and that the induction of specific genes can be used as biomarkers for the exposure of early life stages of zebrafish to metal-contaminated sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahlf W, Förstner U (2001) Managing contaminated sediments. J Soil Sediment 1:30–36

    Article  CAS  Google Scholar 

  • Ahlf W, Drost W, Heise S (2009) Incorporation of metal bioavailability into regulatory frameworks-metal exposure in water and sediment. J Soil Sediment 9:411–419

    Article  CAS  Google Scholar 

  • Barbee NC, Ganio K, Swearer SE (2014) Integrating multiple bioassays to detect and assess impacts of sublethal exposure to metal mixtures in an estuarine fish. Aquat Toxicol 152:244–255

    Article  CAS  Google Scholar 

  • Barjhoux I, Baudrimont M, Morin B, Landi L, Gonzalez P, Cachot J (2012) Effects of copper and cadmium spiked-sediments on embryonic development of Japanese medaka (Oryzias latipes). Ecotox Environ Safe 79:272–282

    Article  CAS  Google Scholar 

  • Bellavere C, Gorbi J (1981) A comparative-analysis of acute toxicity of chromium, copper and cadmium to Daphnia Magna, Biomphalaria glabrata, and Brachydanio rerio. Environ Technol Lett 2:119–128

    Article  CAS  Google Scholar 

  • Blaha L, Hilscherova K, Cap T, Klanova J, Machat J, Zeman J, Holoubek I (2010) Kinetic bacterial bioluminescence assay for contact sediment toxicity testing: relationships with the matrix composition and contamination. Environ Toxicol Chem 29:507–514

    Article  CAS  Google Scholar 

  • Blechinger SR, Warren JT, Kuwada JY, Krone PH (2002) Developmental toxicology of cadmium in living embryos of a stable transgenic zebrafish line. Environ Health Persp 110:1041–1046

    Article  CAS  Google Scholar 

  • Borgmann U, Norwood WP, Dixon DG (2008) Modelling bioaccumulation and toxicity of metal mixtures. Hum Ecol Risk Assess 14:266–289

    Article  CAS  Google Scholar 

  • Boyd RS (2010) Heavy metal pollutants and chemical ecology: exploring new frontiers. J Chem Ecol 36:46–58

    Article  CAS  Google Scholar 

  • Braunbeck T, Boettcher M, Hollert H, Kosmehl T, Lammer E, Leist E, Rudolf M, Seitz N (2005) Towards an alternative for the acute fish LC50 test in chemical assessment: the fish embryo toxicity test goes multi-species—an update. Altex 22:87–102

    Google Scholar 

  • Breitholtz M, Eriksson J, Green N, Ruden C (2006) Testing and risk assessment of persistent and bioaccumulating chemical substances—improvements within REACH? Hum Ecol Risk Assess 12:782–805

    Article  CAS  Google Scholar 

  • Burton GA (1991) Assessing the toxicity of fresh-water sediments. Environ Toxicol Chem 10:1585–1627

    Article  CAS  Google Scholar 

  • Canton JH, Slooff W (1982) Toxicity and accumulation studies of cadmium (Cd-2+) with fresh-water organisms of different trophic levels. Ecotox Environ Safe 6:113–128

    Article  CAS  Google Scholar 

  • Chen WY, John JAC, Lin CH, Lin HF, Wu SC, Chang CY (2004) Expression of metallothionein gene during embryonic and early larval development in zebrafish. Aquat Toxicol 69:215–227

    Article  CAS  Google Scholar 

  • Chen WY, John JAC, Lin CH, Chang CY (2007) Expression pattern of metallothionein, MTF-1 nuclear translocation, and its DNA-binding activity in zebrafish (Danio rerio) induced by zinc and cadmium. Environ Toxicol Chem 26:110–117

    Article  CAS  Google Scholar 

  • Cousin X, Cachot J (2014) PAHs and fish—exposure monitoring and adverse effects—from molecular to individual level. Environ Sci Pollut Res 21:13685–13688

    Article  CAS  Google Scholar 

  • Craig PM, Galus M, Wood CM, McClelland GB (2009a) Dietary iron alters waterborne copper-induced gene expression in soft water acclimated zebrafish (Danio rerio). Am J Physiol-Reg I 296:R362–R373

    CAS  Google Scholar 

  • Craig PM, Hogstrand C, Wood CM, McClelland GB (2009b) Gene expression endpoints following chronic waterborne copper exposure in a genomic model organism, the zebrafish, Danio rerio. Physiol Genomics 40:23–33

    Article  CAS  Google Scholar 

  • Dell'Anno A, Mei ML, Ianni C, Danovaro R (2003) Impact of bioavailable heavy metals on bacterial activities in coastal marine sediments. World J Microb Biot 19:93–100

    Article  Google Scholar 

  • Di Toro DM, Mahony JD, Hansen DJ, Scott KJ, Hicks MB, Mayr SM, Redmond MS (1990) Toxicity of cadmium in sediments—the role of acid volatile sulfide. Environ Toxicol Chem 9:1487–1502

    Article  Google Scholar 

  • Di Toro DM, Mahony JD, Hansen DJ, Scott CJ, Carlson AR, Ankley GT (1992) Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ Sci Technol 26:96–101

    Article  Google Scholar 

  • Di Toro D, McGrath J, Hansen D, Berry W, Paquin P, Mathew R, Wu KB, Sanatore RC (2005) Predicting sediment toxicity using a sediment biotic ligand model: methodology and initial application. Environ Toxicol Chem 24:2410–2427

    Article  Google Scholar 

  • DIN (2001) DIN 38415-6: Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung: Suborganismische Testverfahren (Gruppe T) Teil 6: Giftigkeit gegenüber Fischen: Bestimmung der nicht akut giftigen Wirkung von Abwasser auf die Entwicklung von Fischeiern über Verdünnungsstufen (T 6). Deutsches Institut für Normung e. V., Berlin

  • Duft M, Schulte-Oehlmann U, Tillmann M, Markert B, Oehlmann J (2003) Toxicity of triphenyltin and tributyltin to the freshwater mudsnail Potamopyrgus antipodarum in a new sediment biotest. Environ Toxicol Chem 22:145–152

    CAS  Google Scholar 

  • Eimers MC, Evans RD, Welbourn PM (2002) Partitioning and bioaccumulation of cadmium in artificial sediment systems: application of a stable isotope tracer technique. Chemosphere 46:543–551

    Article  CAS  Google Scholar 

  • Eklund B, Elfstrom M, Gallego I, Bengtsson B-E, Breitholtz M (2010) Biological and chemical characterization of harbour sediments from the Stockholm area. J Soil Sediment 10:127–141

    Article  CAS  Google Scholar 

  • Feiler U, Ahlf W, Hoess S, Hollert H, Neumann-Hensel H, Meller M, Weber J, Heininger P (2005) The SeKT Joint Research Project: definition of reference conditions, control sediments and toxicity thresholds for limnic sediment contact tests. Environ Sci Pollut R 12:257–258

    Article  Google Scholar 

  • Feiler U, Ahlf W, Fahnenstich C, Gilberg D, Hammers-Wirtz M, Höss S, Hollert H, Melbye K, Meller M, Neumann-Hensel H, Ratte HT, Seiler TB, Spira D, Weber J, Heininger P (2009) Final report SeKT framework project - Definition von Referenzbedingungen, Kontrollsedimenten und Toxizitätsschwellenwerten für limnische Sedimentkontakttests - SeKT

  • Feiler U, Hoess S, Ahlf W, Gilberg D, Hammers-Wirtz M, Hollert H, Meller M, Neumann-Hensel H, Ottermanns R, Seiler TB, Spira D, Heininger P (2013) Sediment contact tests as a tool for the assessment of sediment quality in German waters. Environ Toxicol Chem 32:144–155

    Article  CAS  Google Scholar 

  • Förstner U, Westrich B (2005) BMBF coordinated research project SEDYMO (2002-2006)—sediment dynamics and pollutant mobility in river basins. J Soil Sediment 5:134–138

    Article  Google Scholar 

  • Goedkoop W, Widenfalk A, Haglund AL, Steger K, Bertilsson S (2005) Microbial characterization of artificial sediment and comparisons with natural sediments—implications for toxicity testing. Environ Toxicol Chem 24:2725–2733

    Article  CAS  Google Scholar 

  • Gonzalez P, Baudrimont M, Boudou A, Bourdineaud JP (2006) Comparative effects of direct cadmium contamination on gene expression in gills, liver, skeletal muscles and brain of the zebrafish (Danio rerio). Biometals 19:225–235

    Article  CAS  Google Scholar 

  • Hallare AV, Schirling M, Luckenbach T, Kohler HR, Triebskorn R (2005) Combined effects of temperature and cadmium on developmental parameters and biomarker responses in zebrafish (Danio rerio) embryos. J Therm Biol 30:7–17

    Article  CAS  Google Scholar 

  • Hallare AV, Seiler TB, Hollert H (2011) The versatile, changing, and advancing roles of fish in sediment toxicity assessment—a review. J Soil Sediment 11:141–173

    Article  CAS  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580

    Article  CAS  Google Scholar 

  • Hecky RE, Mugidde R, Ramlal PS, Talbot MR, Kling GW (2010) Multiple stressors cause rapid ecosystem change in Lake Victoria. Freshwater Biol 55:19–42

    Article  Google Scholar 

  • Hilscherova K, Dusek L, Sidlova T, Jalova V, Cupr P, Giesy JP, Nehyba S, Jarkovsky J, Klanova J, Holoubek I (2010) Seasonally and regionally determined indication potential of bioassays in contaminated river sediments. Environ Toxicol Chem 29:522–534

    Article  CAS  Google Scholar 

  • Hollert H, Duerr M, Olsman H, Halldin K, Van Bavel B, Brack W, Tysklind M, Engwall M, Braunbeck T (2002) Biological and chemical determination of dioxin-like compounds in sediments by means of a sediment triad approach in the catchment area of the River Neckar. Ecotoxicology 11:323–336

    Article  CAS  Google Scholar 

  • Hollert H, Keiter S, König N, Rudolf M, Ulrich M, Braunbeck T (2003) A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos. J Soil Sediment 3:197–207

    Article  Google Scholar 

  • Hollert H, Seiler TB, Blaha L, Young AL (2007) Multiple stressors for the environment: present and future challenges and perspectives. Environ Sci Pollut R 14:222–222

    Article  Google Scholar 

  • Höss S, Ahlf W, Fahnenstich C, Gilberg D, Hollert H, Melbye K, Meller M, Hammers-Wirtz M, Heininger P, Neumann-Hensel H, Ottermanns R, Ratte HT, Seiler TB, Spira D, Weber J, Feiler U (2010) Variability of sediment-contact tests in freshwater sediments with low-level anthropogenic contamination—determination of toxicity thresholds. Environ Pollut 158:2999–3010

    Article  Google Scholar 

  • Hutchins CM, Teasdale PR, Lee J, Simpson SL (2007) The effect of manipulating sediment pH on the porewater chemistry of copper- and zinc-spiked sediments. Chemosphere 69:1089–1099

    Article  CAS  Google Scholar 

  • ISO (1996) ISO 7346/3: Water quality -- Determination of the acute lethal toxicity of substances to a freshwater fish [Brachydanio rerio, Hamilton-Buchanan (Teleostei, Cyprinidae)] -- Part 3: Flow-through method. Iso Guideline

  • ISO (2007) ISO 15088: Water quality — Determination of the acute toxicity of waste water to zebrafish eggs (Danio rerio). Iso Guideline

  • Karouna-Renier NK, Zehr JP (2003) Short-term exposures to chronically toxic copper concentrations induce HSP70 proteins in midge larvae (Chironomus tentans). Sci Total Environ 312:267–272

    Article  CAS  Google Scholar 

  • Klerks PL, Weis JS (1987) Genetic adaption to heavy metals in aquatic organisms—a review. Environ Pollut 45:173–205

    Article  CAS  Google Scholar 

  • Köck MG (1996) Die toxische Wirkung von Schwermetallen auf Fische - Beiträge zur Festlegung von Immissionsbereichen für Kupfer, Cadmium, Quecksilber, Chrom, Nickel, Blei und Zink aus fischbiologischer Sicht. ecomed

  • Komjarova I, Blust R (2009a) Effects of Na, Ca, and pH on the simultaneous uptake of Cd, Cu, Ni, Pb, and Zn in the zebrafish Danio rerio: a stable isotope experiment. Environ Sci Technol 43:7958–7963

    Article  CAS  Google Scholar 

  • Komjarova I, Blust R (2009b) Multimetal interactions between Cd, Cull, Ni, Pb, and Zn uptake from water in the zebrafish Danio rerio. Environ Sci Technol 43:7225–7229

    Article  CAS  Google Scholar 

  • Kosmehl T, Hallare AV, Reifferscheid G, Manz W, Braunbeck T, Hollert H (2006) A novel contact assay for testing genotoxicity of chemicals and whole sediments in zebrafish embryos. Environ Toxicol Chem 25:2097–2106

    Article  CAS  Google Scholar 

  • Kosmehl T, Otte JC, Yang L, Legradi J, Bluhm K, Zinsmeister C, Keiter SH, Reifferscheid G, Manz W, Braunbeck T, Strähle U, Hollert H (2012) A combined DNA-microarray and mechanism-specific toxicity approach with zebrafish embryos to investigate the pollution of river sediments. Reprod Toxicol 33:245–253

    Article  CAS  Google Scholar 

  • Krone PH, Evans TG, Blechinger SR (2003) Heat shock gene expression and function during zebrafish embryogenesis. Semin Cell Dev Biol 14:267–274

    Article  CAS  Google Scholar 

  • Küster E, Altenburger R (2008) Oxygen decline in biotesting of environmental samples—is there a need for consideration in the acute zebrafish embryo assay? Environ Toxicol 23:745–750

    Article  Google Scholar 

  • Lammer E, Carr GJ, Wendler K, Rawlings JM, Belanger SE, Braunbeck T (2009) Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comp Biochem Phys C 149:196–209

    CAS  Google Scholar 

  • Liebl AL, Granados LH, Zhang Q, Wang GD, Mielke HW, Gonzales CR, Ennis DG, Rees BB (2008) Effects of post-hurricane Katrina New Orleans (LA, USA) sediments on early development of the japanese medaka (Oryzias latipes). Environ Toxicol Chem 27:2557–2564

    Article  CAS  Google Scholar 

  • Linge KL, Jarvis KE (2009) Quadrupole ICP-MS: introduction to instrumentation, measurement techniques and analytical capabilities. Geostand Geoanal Res 33:445–467

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Micovic V, Bulog A, Kucic N, Jakovac H, Radosevic-Stasic B (2009) Metallothioneins and heat shock proteins 70 in marine mussels as sensors of environmental pollution in Northern Adriatic Sea. Source: Environ Toxicol Phar 28:439–447

    CAS  Google Scholar 

  • Nagel R (2002) DarT: the embryo test with the zebrafish Danio rerio—a general model in ecotoxicology and toxicology. Altex 19:38–48

    Google Scholar 

  • Nguyen LTH, Janssen CR (2001) Comparative sensitivity of embryo-larval toxicity assays with African catfish (Clarias gariepinus) and zebra fish (Danio rerio). Environ Toxicol 16:566–571

    Article  CAS  Google Scholar 

  • OECD (1984) Guideline for Testing of Chemicals 207: Earthworm, Acute Toxicity Tests. Organisation for Economic Cooperation and Developement

  • OECD (2004) OECD guideline 218: Sediment-water chironomid toxicity using spiked sediment. Organisation for Economic Cooperation and Development

  • OECD (2013) Guideline for Testing of Chemicals 236: Fish Embryo Acute Toxicity (FET) Test. Organisation for Economic Cooperation and Development

  • Pierron F, Bourret V, St-Cyr J, Campbell PGC, Bernatchez L, Couture P (2009) Transcriptional responses to environmental metal exposure in wild yellow perch (Perca flavescens) collected in lakes with differing environmental metal concentrations (Cd, Cu, Ni). Ecotoxicology 18:620–631

    Article  CAS  Google Scholar 

  • Rawson DM, Zhang T, Kalicharan D, Jongebloed WL (2000) Field emission scanning electron microscopy and transmission electron microscopy studies of the chorion, plasma membrane and syncytial layers of the gastrula-stage embryo of the zebrafish Brachydanio rerio: A consideration of the structural and functional relationships with respect to cryoprotectant penetration. Aquac Res 31:325–336

    Article  Google Scholar 

  • Roberts RJ, Agius C, Saliba C, Bossier P, Sung YY (2010) Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review. J Fish Dis 33:789–801

    Article  CAS  Google Scholar 

  • Rodrigues SM, Henriques B, Coimbra J, da Silva EF, Pereira ME, Duarte AC (2010) Water-soluble fraction of mercury, arsenic and other potentially toxic elements in highly contaminated sediments and soils. Chemosphere 78:1301–1312

    Article  CAS  Google Scholar 

  • Roesijadi G (1992) Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat Toxicol 22:81–114

    Article  CAS  Google Scholar 

  • Schmitt C, Balaam J, Leonards P, Brix R, Streck G, Tuikka A, Bervoets L, Brack W, van Hattum B, Meire P, de Deckere E (2010) Characterizing field sediments from three European river basins with special emphasis on endocrine effects—a recommendation for Potamopyrgus antipodarum as test organism. Chemosphere 80:13–19

    Article  CAS  Google Scholar 

  • Schramel P (2003) Digestion procedures for the determination of metals in biological materials. Wiley VCH, Weinheim

    Google Scholar 

  • Schramel P, Begerow J, Emons H (1999) The use of ICP-MS for human biomonitoring. Wiley VCH, Weinheim

    Google Scholar 

  • Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077

    Article  CAS  Google Scholar 

  • Simpson SL, Batley GE (2006) Predicting metal toxicity in sediments: a critique of current approaches. Integr Environ Assess Manag 3:18–31

    Article  Google Scholar 

  • Simpson SL, Angel BM, Jolley DF (2004) Metal equilibration in laboratory-contaminated (spiked) sediments used for the development of whole-sediment toxicity tests. Chemosphere 54:597–609

    Article  CAS  Google Scholar 

  • Smirnova IV, Bittel DC, Ravindra R, Jiang HM, Andrews GK (2000) Zinc and cadmium can promote rapid nuclear translocation of metal response element-binding transcription factor-1. J Biol Chem 275:9377–9384

    Article  CAS  Google Scholar 

  • Strähle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar R (2012) Zebrafish embryos as an alternative to animal experiments—a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol 33:128–132

    Article  Google Scholar 

  • Strecker R, Seiler TB, Hollert H, Braunbeck T (2011) Oxygen requirements of zebrafish (Danio rerio) embryos in embryo toxicity tests with environmental samples. Comparative biochemistry and physiology. Toxicol Pharmacol: CBP 153:318–27

    Google Scholar 

  • Sundback K, Alsterberg C, Larson F (2010) Effects of multiple stressors on marine shallow-water sediments: response of microalgae and meiofauna to nutrient-toxicant exposure. J Exp Mar Biol Ecol 388:39–50

    Article  Google Scholar 

  • Turesson EU, Stiernstrom S, Minten J, Adolfsson-Erici M, Bengtsson BE, Breitholtz M (2007) Development and reproduction of the freshwater harpacticoid copepod Attheyella crassa for assessing sediment-associated toxicity. Aquat Toxicol 83:180–189

    Article  CAS  Google Scholar 

  • Verrhiest GJ, Cortes S, Clement B, Montuelle B (2002) Chemical and bacterial changes during laboratory conditioning of formulated and natural sediments. Chemosphere 46:961–974

    Article  CAS  Google Scholar 

  • Vicquelin L, Leray-Forget J, Peluhet L, LeMenach K, Deflandre B, Anschutz P, Etcheber H, Morin B, Budzinski H, Cachot J (2011) A new spiked sediment assay using embryos of the Japanese medaka specifically designed for a reliable toxicity assessment of hydrophobic chemicals. Aquat Toxicol 105:235–245

    Article  CAS  Google Scholar 

  • Vignet C, Devier M-H, Le Menach K, Lyphout L, Potier J, Cachot J, Budzinski H, Bégout M-L, Cousin X (2014) Long-term disruption of growth, reproduction, and behavior after embryonic exposure of zebrafish to PAH-spiked sediment. Environ Sci Pollut Res 21:13877–13887

    Article  CAS  Google Scholar 

  • Whyte JJ, Jung RE, Schmitt CJ, Tillitt DE (2000) Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Crit Rev Toxicol 30:347–570

    Article  CAS  Google Scholar 

  • Wölz J, Cofalla C, Hudjetz S, Roger S, Brinkmann M, Schmidt B, Schaffer A, Kammann U, Lennartz G, Hecker M, Schuttrumpf H, Hollert H (2009) In search for the ecological and toxicological relevance of sediment re-mobilisation and transport during flood events. J Soil Sediment 9:1–5

    Article  Google Scholar 

  • Worms I, Simon DF, Hassler CS, Wilkinson KJ (2006) Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie 88:1721–1731

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The RWTH Aachen University Undergraduate Research Opportunity Program (UROP) provided funding for a research stay in Saskatoon. Dr. Zielke was supported by the German National Academic Foundation. The authors wish to acknowledge the support of an instrumentation grant from the Canada Foundation for Infrastructure. Profs. Giesy and Hecker were supported by the Canada Research Chair program. In addition, Prof. Giesy was supported by an at large Chair Professorship at the Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, The Einstein Professor Program of the Chinese Academy of Sciences and the Visiting Professor Program of King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hollert.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 378 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redelstein, R., Zielke, H., Spira, D. et al. Bioaccumulation and molecular effects of sediment-bound metals in zebrafish embryos. Environ Sci Pollut Res 22, 16290–16304 (2015). https://doi.org/10.1007/s11356-015-5328-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5328-3

Keywords

Navigation