Skip to main content
Log in

Insecticides induced biochemical changes in freshwater microalga Chlamydomonas mexicana

  • Selected Papers from the 2nd Contaminated Land, Ecological Assessment and Remediation (CLEAR 2014) Conference: Environmental Pollution and Remediation
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The effect of insecticides (acephate and imidacloprid) on a freshwater microalga Chlamydomonas mexicana was investigated with respect to photosynthetic pigments, carbohydrate and protein contents, fatty acids composition and induction of stress indicators including proline, superoxide dismutase (SOD) and catalase (CAT). C. mexicana was cultivated with 1, 5, 10, 15, 20 and 25 mg L−1 of acephate and imidacloprid. The microalga growth increased with increasing concentrations of both insecticides up to 15 mg L−1, beyond which the growth declined compared to control condition (without insecticides). C. mexicana cultivated with 15 mg L−1 of both insecticides for 12 days was used for further analysis. The accumulation of photosynthetic pigments (chlorophyll and carotenoids), carbohydrates and protein was decreased in the presence of both insecticides. Acephate and imidacloprid induced the activities of superoxide dismutase (SOD) and catalase (CAT) and increased the concentration of proline in the microalga, which play a defensive role against various environmental stresses. Fatty acid analysis revealed that the fraction of polyunsaturated fatty acids decreased on exposure to both insecticides. C. mexicana also promoted 25 and 21 % removal of acephate and imidacloprid, respectively. The biochemical changes in C. mexicana on exposure to acephate and imidacloprid indicate that the microalga undergoes an adaptive change in response to the insecticide-induced oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 5:121–126

    Article  Google Scholar 

  • Alia P, Saradhi P (1993) Suppression in mitochondrial electron transport is the prime cause behind stress induced proline accumulation. Biochem Biophys Res Commun 193:54–58. doi:10.1006/bbrc.1993.1589

    Article  CAS  Google Scholar 

  • Anhalt JC, Moorman TB, Koskinen WC (2007) Biodegradation of imidacloprid by an isolated soil microorganism. J Environ Sci Health Part B 42:509–514. doi:10.1080/03601230701391401

    Article  CAS  Google Scholar 

  • Babu GS, Hans RK, Singh J, Viswanathan PN, Joshi PC (2001) Effect of lindane on the growth and metabolic activities of cyanobacteria. Ecotoxicol Environ Saf 48:219–21. doi:10.1006/eesa.2000.2033

    Article  Google Scholar 

  • Bates LS, Wadern RP, Teare ID (1973) Rapid estimation of free proline for water stress determination. Plant Soil 39:205–207. doi:10.1007/BF00018060

    Article  CAS  Google Scholar 

  • Bischoff HW, Bold HC (1963) Phycological Studies IV. In: Some soil algae fromenchanted rock and related algal species. University of Texas Publication, Austin, pp 1-95

  • Choudhary M, Jetley UK, Khan MA, Zutshi S, Fatma T (2007) Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol Environ Saf 66:204–209. doi:10.1016/j.ecoenv.2006.02.002

    Article  CAS  Google Scholar 

  • Chuanjiang T, Dahui L, Xinzhong Z, Shanshan C, Lijuan F, Xiuying P, Jie S, Hui J, Chongjiu L, Jianzhong L (2010) Residue analysis of acephate and its metabolite methamidophos in open field and greenhouse pakchoi (Brassica campestrisL.) by gas chromatography-tandem mass spectrometry. Environ Monit Assess 165:685–692. doi:10.1007/s10661-009-0979-5

    Article  Google Scholar 

  • Cycon M, Wojcik M, Piotrowska-Seget Z (2009) Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere 76:494–501. doi:10.1016/j.chemosphere.2009.03.023

    Article  CAS  Google Scholar 

  • Dhindsa RS, Dhindsa PP, Thorpe TA (1981) Leaf senescence: correlated with increased level of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101. doi:10.1093/jxb/32.1.93

    Article  CAS  Google Scholar 

  • Dosnon-Olette R, Trotel-Aziz P, Couderchet M, Eullaffroy P (2010) Fungicides and herbicide removal in Scenedesmus cell suspensions. Chemosphere 79:117–123. doi:10.1016/j.chemosphere.2010.02.005

    Article  CAS  Google Scholar 

  • DuBois M, Gilles K, Hamilton J, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  • Elizabeth H. Harris (2008) The Chlamydomonas Sourcebook, Vol. 1: Introduction to Chlamydomonas and its laboratory use. Academic Press, Edition 2nd. ISBN-10: 0123708745

  • El-Salam Issa A, Adam MS, Fawzy MA (2013) Alterations in some metabolic activities of Scenedesmusquadricauda and Merismopediaglauca in response to glyphosate herbicide. J Biol Earth Sci 3(1):B17–B23

    Google Scholar 

  • Fatma T, Khan MA, Choudhary M (2007) Impact of environmental pollution on cyanobacterialproline content. J Appl Phycol 19:625–629. doi:10.1007/s10811-007-9195-2

    Article  Google Scholar 

  • Felsot A, Maddox JV, Bruce W (1989) Enhanced microbial degradation of carbofuran in soils with histories of carbofuran use. Bull Environ Contam Toxicol 26:781–788. doi:10.1007/BF01622171

    Article  Google Scholar 

  • Galhano V, Laranjo JG, Peixoto F (2011a) Exposure of the cyanobacterium Nostocmuscorum from Portuguese rice fields to Molinate (Ordram®): Effects on the antioxidant system and fatty acid profile. Aquat Toxicol 101:367–376. doi:10.1016/j.aquatox.2010.11.011

    Article  CAS  Google Scholar 

  • Galhano V, Santos H, Oliveira MM, Laranjo JG, Peixoto F (2011b) Changes in fatty acid profile and antioxidant systems in a Nostocmuscorum strain exposed to the herbicide bentazon. Process Biochem 46:2152–2162. doi:10.1016/j.procbio.2011.08.015

    Article  CAS  Google Scholar 

  • Gibbons D, Morrissey C, Mineau P (2014) A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut Res. doi:10.1007/s11356-014-3180-5

    Google Scholar 

  • Hellebust JA, Craige JS (1978) Handbook of physiological and biochemical methods. Cambridge university press, Cambridge, pp 64–70

    Google Scholar 

  • Hirooka T, Nagase H, Uchida K, Hiroshige Y, Ehara Y, Nishikawa J, Nishihara T, Miyamoto K, Hirata Z (2005) Biodegradation of bisphenol A and disappearance of its estrogenic activity by the green alga Chlorella fuscavar. vacuolata. Environ Toxicol Chem 24:1896–1901. doi:10.1897/04-259R.1

    Article  CAS  Google Scholar 

  • Imlay JA, Chin SM, Linn S (1998) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240:640–642. doi:10.1126/science.2834821

    Article  Google Scholar 

  • Ingram CW, Coyne MS, Williams DW (2005) Effects of commercial diazinon and imidacloprid on microbial urease activity in soil and sod. J Environ Qual 34:1573–1580. doi:10.2134/jeq2004.0433

    Article  CAS  Google Scholar 

  • Janknegt PJ, Rijstenbil JW, Van de Poll WH, Gechev TS, Buma AGJ (2007) A comparison of quantitative and qualitative Superoxide dismutase assays for application to low temperature microalgae. J Photochem Photobiol B Biol 87:218–226. doi:10.1016/j.jphotobiol.2007.04.002

    Article  CAS  Google Scholar 

  • Jemec A, Tisler T, Drobne D, Sepcic K, Fournier D, Trebse P (2007) Comparative toxicity of imidacloprid, of its commercial liquid formulation and of diazinon to a non-target arthropod, the microcrustaceanDaphnia magna. Chemosphere 68:1408–1418. doi:10.1016/j.chemosphere.2007.04.015

    Article  CAS  Google Scholar 

  • Ji MK, Kabra AN, Choi J, Hwang JH, Kim JR, Abou-Shanab RAI, Oh YK, Jeon BH (2014) Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonasmexicana and Chlorellavulgaris. Ecol Eng 73:260–269. doi:10.1016/j.ecoleng.2014.09.070

    Article  Google Scholar 

  • Kabra AN, Ji MK, Choi J, Kim JR, Govindwar SP, Jeon BH (2014) Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga, Chlamydomonasmexicana. Environ Sci Pollut Res 21:12270–12278. doi:10.1007/s11356-014-3157-4

    Article  CAS  Google Scholar 

  • Kumar MS, Praveenkumar R, Jeon BH, Thajuddin N (2014) Chlorpyrifos induced changes in the antioxidants and fatty acid compositions of Chroococcusturgidus NTMS12. Lett Appl Microbiol 59(5):535–541. doi:10.1111/lam.12311

    Article  CAS  Google Scholar 

  • Kumar MS, Praveenkumar R, Ilavarasi A, Rajeshwari K, Thajuddin N (2013) Biochemical changes of fresh water cyanobacteria Dolichospermumflos-aquae NTMS07 to chromium-induced stress with special reference to antioxidant enzymes and cellular fatty acids. Bull Environ Contam Toxicol 90:730–735. doi:10.1007/s00128-013-0984-9

    Article  CAS  Google Scholar 

  • Kumar MS, Praveenkumar R, Ilavarasi A, Rajeshwari K, Thajuddin N (2012a) Oxidative stress response and fatty acid changes associated with bioaccumulation of chromium by a fresh water cyanobacterium Chroococcus sp. Biotechnol Lett 34:247–251. doi:10.1007/s10529-011-0771-9

    Article  CAS  Google Scholar 

  • Kumar N, Bora A, Kumar R, Amb MK (2012b) Differential Effects of Agricultural Pesticides Endosulfan and Tebuconazole on Photosynthetic pigments, Metabolism and Assimilating Enzymes of Three Heterotrophic, Filamentous Cyanobacteria. J Biol Environ Sci 6:67–75

    Google Scholar 

  • Kumar S, Habib K, Fatma T (2008) Endosulfan induced biochemical changes in nitrogen-fixing cyanobacteria. Sci Total Environ 403:130–138. doi:10.1016/j.scitotenv.2008.05.026

    Article  CAS  Google Scholar 

  • Kwon CS, Penner D (1995) The interaction of insecticides with herbicide activity. Weed Technol 9:119–124

    CAS  Google Scholar 

  • Leitao MAS, Cardozo KHM, Pinto E, Colepicolo P (2003) PCB-Induced oxidative stress in the unicellular marine dinoflagellateLingulodiniumpolyedrum. Arch Environ Contam Toxicol 45:59–65. doi:10.1007/s00244-002-0208-5

    Article  CAS  Google Scholar 

  • Lepage G, Roy CC (1984) Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J Lipid Res 25:1391–1396

    CAS  Google Scholar 

  • Lin X, Xu X, Yang C, Zhao Y, Feng Z, Dong Y (2009) Activities of antioxidant enzymes in three bacteria exposed to bensulfuron-methyl. Ecotoxicol Environ Saf 72:1899–1904. doi:10.1016/j.ecoenv.2009.04.016

    Article  CAS  Google Scholar 

  • Littlefield-Wyer JG, Brooks P, Katouli A (2008) Application of biochemical fingerprinting and fatty acid methyl ester profiling to assess the effect of the pesticide Atradex on aquatic microbial communities. Environ Pollut 153:393–400. doi:10.1016/j.envpol.2007.08.016

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Follin. phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  • Mohapatra S, Ahuja AK, Deepa M, Sharma D (2011) Residues of acephate and its metabolite methamidophos in/on mango fruit (Mangiferaindica L.). Bull Environ Contam Toxicol 86:101–104. doi:10.1007/s00128-010-0154-2

    Article  CAS  Google Scholar 

  • Motulsky HJ (2007) Prism 5 statistics guide. GraphPad Software Inc, San Diego CA

    Google Scholar 

  • Newsted JL (2004) Effect of light, temperature, and pH on the accumulation of phenol by Selenastrumcapricornutum, a green alga. Ecotoxicol Environ Saf 59:237–243. doi:10.1016/j.ecoenv.2003.07.009

    Article  CAS  Google Scholar 

  • Okamoto OKE, Pinto E, Latorre LR, Bechara EJH, Colepicolo P (2001) Antioxidant modulation in response to metal-induced oxidative stress in algal chloroplasts. Arch Environ Contam Toxicol 40:18–24. doi:10.1007/s002440010144

    Article  CAS  Google Scholar 

  • Olga B, Eija V, Kurt VF (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–94. doi:10.1093/aob/mcf118

    Article  Google Scholar 

  • Porra RJ, Thompson WA, Kriedmann PE (1989) Determination of accurate extinction co-efficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394. doi:10.1016/S0005-2728(89)80347-0

    Article  CAS  Google Scholar 

  • Prasad SM, Kumar D, Zeeshan M (2005) Growth photosynthesis, active oxygen species and antioxidants responses of paddy field cyanobacterium Plectonemaboryanumto endosulfan stress. J Gen Appl Microbiol 51:115–123. doi:10.2323/jgam.51.115

    Article  CAS  Google Scholar 

  • Ramu S, Seetharaman B (2014) Biodegradation of acephate and methamidophos by a soil bacterium Pseudomonas aeruginosa strain Is-6. J Environ Sci Health Part B49:23–34. doi:10.1080/03601234.2013.836868

    Article  Google Scholar 

  • Rodger PA, Simpson I, Oficial R, Ardales S, Jimenez R (1994) Effects of pesticides on soil and water microflora and mesofauna in wetland rice fields: a summary of current knowledge and extrapolation to temperate environments. Aust J Exp Agric 34:1057–1068. doi:10.1071/EA9941057

    Article  Google Scholar 

  • Saroja G, Bose S (1982) Effect of methylparathion on the growth, cell size, pigment and protein content of Chlorellaprotothecoides. Environ Pollut 27:297–308. doi:10.1016/0143-1471(82)90158-1

    Article  CAS  Google Scholar 

  • Satish N, Tiwari GL (2000) Pesticide tolerance in Nostoclinckia in relation to the growth and nitrogen fixation. Proc Natl Acad Sci India 70:319–323

    Google Scholar 

  • Singh BK, Walker A, Wright DJ (2006) Bioremedial potential of fenamiphos and chlorpyrifos degrading isolates: Influence of different environmental conditions. Soil Biol Biochem. doi:10.1016/j.soilbio.2006.04.019

    Google Scholar 

  • Singh SC, Sinha RP, Hader DP (2002) Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozool 41:297–308

    CAS  Google Scholar 

  • Srivastava AK, Bhargava P, Rai LC (2005) Salinity and copper-induced oxidative damage and changes in the antioxidative defence systems of Anabaena doliolum. World J Microbiol Biotechnol 21:1291–1298. doi:10.1007/s11274-005-2442-2

    Article  CAS  Google Scholar 

  • Vandana S, Basu DB, Asit KC (2001) Lipid peroxidation, free radical scavenging enzymes, and glutathione redox system in blood of rats exposed to propoxur. Pestic Biochem Physiol 71:133–139. doi:10.1006/pest.2001.2571

    Article  Google Scholar 

  • Wiktelius E, Stenberg G (2007) Novel class of glutathione transferases from cyanobacteria exhibit high catalytic activities towards naturally occurring isothiocyanates. Biochem J406:115–123. doi:10.1042/BJ20070328

    Article  Google Scholar 

  • Wright SJL, Stantharpe AF, Downs JD (1997) Interaction of the herbicide propanil and a metabolite. 3,4-dichloromiline, with blue green algae. Acta Pathol Acad Sci Hung 12:51–60

    Google Scholar 

  • Zarger MY, Dar GH (1990) Effectof benthiocarb and butachlor on growth and nitrogen fixation by cyanobacteria45:232–234. Bull Environ Contam Toxicol. doi:10.1007/BF01700189

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Mid-career Researcher Program (National Research Foundation of Korea, 2013069183). The financial support from the Hanyang University, South Korea, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byong-Hun Jeon.

Additional information

Responsible editor: Cinta Porte

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.S., Kabra, A.N., Min, B. et al. Insecticides induced biochemical changes in freshwater microalga Chlamydomonas mexicana . Environ Sci Pollut Res 23, 1091–1099 (2016). https://doi.org/10.1007/s11356-015-4681-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4681-6

Keywords

Navigation