Skip to main content
Log in

Degradation of florfenicol in water by UV/Na2S2O8 process

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

UV irradiation-activated sodium persulfate (UV/PS) was studied to degrade florfenicol (FLO), a phenicol antibiotic commonly used in aquaculture, in water. Compared with UV/H2O2 process, UV/PS process achieves a higher FLO degradation efficiency, greater mineralization, and less cost. The quantum yield for direct photolysis of FLO and the second-order rate constant of FLO with sulfate radicals were determined. The effects of various factors, namely PS concentration, anions (NO3 , Cl, and HCO3 ), ferrous ion, and humic acid (HA), on FLO degradation were investigated. The results showed that the pseudo-first-order rate constant increased linearly with increased PS concentration. The tested anions all adversely affected FLO degradation performance with the order of HCO3  > Cl > NO3 . Coexisting ferrous ions enhanced FLO degradation at a Fe2+/PS molar ratio under 1:1. HA significantly inhibited FLO degradation due to radical scavenging and light-screening effect. Toxicity assessment showed that it is capable of controlling the toxicity for FLO degradation. These findings indicated that UV/PS is a promising technology for water polluted by antibiotics, and the treatment is optimized only after the impacts of water characteristics are carefully considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Azenha MEDG, Burrows HD, Canle LM, Coimbra R, Fernández MI, García MV, Peiteado MA, Santaballa JA (2003) Kinetic and mechanistic aspects of the direct photodegradation of atrazine, atraton, ametryn and 2-hydroxyatrazine by 254 nm light in aqueous solution. J Phys Org Chem 16:498–503

    Article  CAS  Google Scholar 

  • Baxendale JH, Wilson JA (1957) The photolysis of hydrogen peroxide at high light intensities. Trans Faraday Soc 53:344–356

    Article  CAS  Google Scholar 

  • Beltrán FJ, Ovejero G, Acedo B (1993) Oxidation of atrazine in water by ultraviolet radiation combined with hydrogen peroxide. Water Res 27:1013–1021

    Article  Google Scholar 

  • Beltrán FJ, Ovejero G, Garciaaraya JF, Rivas J (1995) Oxidation of polynuclear aromatic hydrocarbons in water. 2. UV radiation and ozonation in the presence of UV radiation. Ind Eng Chem Res 34:1607–1615

    Article  Google Scholar 

  • Berlin AA (1986) Kinetics of radical-chain decomposition of persulfate in aqueous solutions of organic compounds. Kinet Catal 27:34–39

    Google Scholar 

  • Bolton JR, Bircher KG, Tumas W, Tolman CA (2001) Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC Technical Report). Pure Appl Chem 73:627–637

    Article  CAS  Google Scholar 

  • Caipang CM, Lazado CC, Brinchmann MF, Berg I, Kiron V (2009) In vivo modulation of immune response and antioxidant defense in Atlantic cod, Gauds morhua following oral administration of oxolinic acid and florfenicol. Comp Biochem Physiol C Toxicol Pharmacol 150:459–464

    Article  Google Scholar 

  • Canonica S, Meunier L, Von Gunten U (2008) Phototransformation of selected pharmaceuticals during UV treatment of drinking water. Water Res 42:121–128

    Article  CAS  Google Scholar 

  • Christensen AM, Ingerslev F, Baun A (2006) Ecotoxicity of mixtures of antibiotics used in aquacultures. Environ Toxicol Chem 25:2208–2215

    Article  CAS  Google Scholar 

  • Criquet J, Leitner NKV (2009) Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis. Chemosphere 77:194–200

    Article  CAS  Google Scholar 

  • De Laat J, Gallard H (1999) Catalytic decomposition of hydrogen peroxide by Fe (III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environ Sci Technol 33:2726–2732

    Article  Google Scholar 

  • Deng J, Shao YS, Gao NY, Xia SJ, Tan CQ, Zhou SQ, Hu XH (2013) Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water. Chem Eng J 222:150–158

    Article  CAS  Google Scholar 

  • Exner M, Herrmann H, Zellner R (1992) Laser-based studies of reactions of the nitrate radical in aqueous solution. Ber Bunsen-Ges Phys Chem 96:470–477

    Article  CAS  Google Scholar 

  • Gao YQ, Gao NY, Deng Y, Yang YQ, Ma Y (2012) Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chem Eng J 195–196:248–253

    Article  Google Scholar 

  • Ghauch A, Tuqan AM (2012) Oxidation of bisoprolol in heated persulfate/H2O systems: kinetics and products. Chem Eng J 183:162–171

    Article  CAS  Google Scholar 

  • Gordon L, Giraud E, Ganière JP, Armand F, Bouju-Albert A, de la Cotte N, Mangion C, Le Bris H (2007) Antimicrobial resistance survey in a river receiving effluents from freshwater fish farms. J Appl Microbiol 102:1167–1176

    CAS  Google Scholar 

  • Gu XG, Lu SG, Qiu ZF, Sui Q, Miao ZW, Lin KF, Liu YD, Luo QS (2012) Comparison of photodegradation performance of 1,1,1-trichloroethane in aqueous solution with the addition of H2O2 or S2O8 2− oxidants. Ind Eng Chem Res 51:7196–7204

    Article  CAS  Google Scholar 

  • He XX, de la Cruz AA, Dionysiou DD (2013) Destruction of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals and sulfate radicals using UV-254 nm activation of hydrogen peroxide, persulfate and peroxymonosulfate. J Photochem Photobiol A 251:160–166

    Article  CAS  Google Scholar 

  • Hori H, Yamamoto A, Hayakawa E, Taniyasu S, Yamashita N, Kutsuna S, Kiatagawa H, Arakawa R (2005) Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environ Sci Technol 39:383–2388

    Article  Google Scholar 

  • Jiang XX, Wu YL, Wang P, Li HJ, Dong WB (2013) Degradation of bisphenol A in aqueous solution by persulfate activated with ferrous ion. Environ Sci Pollut Res 20:4947–4953

    Article  CAS  Google Scholar 

  • Khan JA, He XX, Khan HM, Shah NS, Dionysiou DD (2013) Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+, UV/S2O8 2−/Fe2+ and UV/HSO5 /Fe2+ processes: a comparative study. Chem Eng J 218:376–383

    Article  CAS  Google Scholar 

  • Kumar K, Gupta SC, Chander Y, Singh AK (2005) Antibiotic use in agriculture and its impact on the terrestrial environment. Adv Agron 87:1–54

    CAS  Google Scholar 

  • Liang C, Huang CF, Mohanty N, Kurakalva RM (2008) A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere 73:1540–1543

    Article  CAS  Google Scholar 

  • Liu XW, Fang L, Zhou YC, Zhang TQ, Shao Y (2013) Comparison of UV/PDS and UV/H2O2 processes for the degradation of atenolol in water. J Environ Sci 25:1519–1528

    Article  CAS  Google Scholar 

  • Lopez A, Bozzi A, Mascolo G, Kiwi J (2003) Kinetic investigation on UV and UV/H2O2 degradations of pharmaceutical intermediates in aqueous solution. J Photochem Photobiol A 156:121–126

    Article  CAS  Google Scholar 

  • Martins A, Guimarães L, Guilhermino L (2013) Chronic toxicity of the veterinary antibiotic florfenicol to Daphnia magna assessed at two temperatures. Environ Toxicol Phar 36:1022–1032

    Article  CAS  Google Scholar 

  • Minisci F, Citterio A, Giordano C (1983) Electron-transfer processes: peroxydisulfate, a useful and versatile reagent in organic chemistry. Acc Chem Res 16:27–32

    Article  CAS  Google Scholar 

  • Nie MH, Zhang ZJ, Yan CX, Wang XN, Li HJ, Dong WB (2014) Degradation of chloramphenicol by thermally activated persulfate in aqueous solution. Chem Eng J 246:373–382

    Article  CAS  Google Scholar 

  • Olmez-Hanci T, Arslan-Alaton I, Genc B (2013) Bisphenol A treatment by the hot persulfate process: oxidation products and acute toxicity. J Hazard Mater 263:283–290

    Article  CAS  Google Scholar 

  • Rastogi A, Al-Abed SR, Dionysiou DD (2009) Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Appl Catal B Environ 85:171–179

    Article  CAS  Google Scholar 

  • Salari D, Niaei A, Aber S, Rasoulifard MH (2009) The photooxidative destruction of C.I. basic yellow 2 using UV/S2O8 2− process in a rectangular continuous photoreactor. J Hazard Mater 166:61–66

    Article  CAS  Google Scholar 

  • Sapkota A, Sapkota AR, Kucharski M, Burke J, McKenzie S, Walker P, Lawrence R (2008) Aquaculture practices and potential human health risks: current knowledge and future priorities. Environ Int 34:1215–1226

    Article  Google Scholar 

  • Sörensen M, Frimmel FH (1997) Photochemical degradation of hydrophilic xenobiotics in the UV/H2O2 process: influence of nitrate on the degradation rate of EDTA, 2-amino-1-naphthalenesulfonate, diphenyl-4-sulfonate and 4,4′-diaminostilbene-2,2′-disulfonate. Water Res 31:2885–2891

    Article  Google Scholar 

  • Sørensen LK, Elbæk TH (2004) Simultaneous determination of trimethoprim, sulfadiazine, florfenicol and oxolinic acid in surface water by liquid chromatography tandem mass spectrometry. Chromatographia 60:287–291

    Article  Google Scholar 

  • Tan CQ, Gao NY, Deng Y, An N, Deng J (2012) Heat-activated persulfate oxidation of diuron in water. Chem Eng J 203:294–300

    Article  CAS  Google Scholar 

  • Tan CQ, Gao NY, Deng Y, Zhang YJ, Sui MH, Deng J, Zhou SQ (2013) Degradation of antipyrine by UV, UV/H2O2 and UV/PS. J Hazard Mater 260:1008–1016

    Article  CAS  Google Scholar 

  • Tsitonaki A, Petri B, Crimi M, MosbÆK H, Siegrist RL, Bjerg PL (2010) In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Crit Rev Environ Sci Technol 40:55–91

    Article  CAS  Google Scholar 

  • Wang CW, Liang CJ (2014) Oxidative degradation of TMAH solution with UV persulfate activation. Chem Eng J 254:472–478

    Article  CAS  Google Scholar 

  • Wenk J, von Gunten U, Canonica S (2011) Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical. Environ Sci Technol 45:1334–1340

    Article  CAS  Google Scholar 

  • Westerhoff P, Mezyk SP, Cooper WJ, Minakata D (2007) Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee river fulvic acid and other dissolved organic matter isolates. Environ Sci Technol 41:4640–4646

    Article  CAS  Google Scholar 

  • Yang Q, Choi H, Chen Y, Dionysiou DD (2008) Heterogeneous activation of peroxymonosulfate by supported cobalt catalysts for the degradation of 2,4-dichlorophenol in water: the effect of support cobalt precursor and UV radiation. Appl Catal B Environ 77:300–307

    Article  CAS  Google Scholar 

  • Yang SY, Wang P, Yang X, Shan L, Zhang WY, Shao XT, Niu R (2010) Degradation efficiencies of azo dye acid orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide. J Hazard Mater 179:552–558

    Article  CAS  Google Scholar 

  • Yuan RX, Ramjaun SN, Wang ZH, Liu JS (2011) Effects of chloride ion on degradation of acid orange 7 by sulfate radical-based advanced oxidation process: implication for formation of chlorinated aromatic compounds. J Hazard Mater 196:173–179

    Article  CAS  Google Scholar 

  • Zong HM, Ma DY, Wang JY, Hu JT (2008) Effects of florfenicol on microbial activity in marine sediment. Chin J Appl Environ Biol 14:408–412

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the China Postdoctoral Science Foundation (2014M551450), the National Major Project of Science & Technology Ministry of China (No. 2008ZX07421-002; No. 2012ZX07403-001), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120072110050), and the Research and Development Project of the Ministry of Housing and Urban-Rural Development (No. 2009-K7-4). We also thank the anonymous reviewers and editors for their help in the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nai-yun Gao.

Additional information

Responsible editor: Ester Heath

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Yq., Gao, Ny., Deng, Y. et al. Degradation of florfenicol in water by UV/Na2S2O8 process. Environ Sci Pollut Res 22, 8693–8701 (2015). https://doi.org/10.1007/s11356-014-4054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-4054-6

Keywords

Navigation