Skip to main content
Log in

Regeneration of spent TiO2 nanoparticles for Pb (II), Cu (II), and Zn (II) removal

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Spent sorbents in water treatment processes have potential risks to the environment if released without proper treatment. The aim of this work was to investigate the potential regeneration of commercially prepared nano-TiO2 (anatase) for the removal of Pb (II), Cu (II), and Zn (II) by pH 2 and ethylenediaminetetraacetic acid (EDTA) solutions. The percent of metal adsorption/desorption decreased with the increasing number of regeneration cycles, and the extent of decrease varied for each metal. Competitive effects were observed for the adsorption/desorption of different metals when the nano-TiO2 was regenerated by EDTA solutions. Nano-TiO2 was able to treat simulated metal polluted water with greater than 94 % adsorption and greater than 92 % desorption after four cycles of regeneration using pH 2 solution. These results demonstrated that nano-TiO2 can be regenerated and reused using pH 2 solution compared to an EDTA solution for aquatic metal removal, which makes nanosorbents promising and economically and environmentally more attractive in the application of water purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cruz Viggi C, Pagnanelli F, Cibati A, Uccelletti D, Palleschi C, Toro L (2010) Biotreatment and bioassessment of heavy metal removal by sulphate reducing bacteria in fixed bed reactors. Water Res 44(1):151–158

    Article  CAS  Google Scholar 

  • Davis JA, Kent D (1990) Surface complexation modeling in aqueous geochemistry. Rev Mineral Geochem 23(1):177–260

    Google Scholar 

  • Debnath S, Nandi D, Ghosh UC (2011) Adsorption–desorption behavior of cadmium(II) and copper(II) on the surface of nanoparticle agglomerates of hydrous titanium(IV) oxide. Journal of Chemical & Engineering Data 56(7):3021–3028

    Article  CAS  Google Scholar 

  • Deng L, Su Y, Su H, Wang X, Zhu X (2007) Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater 143(1–2):220–225

    Article  CAS  Google Scholar 

  • Doula MK, Ioannou A (2003) The effect of electrolyte anion on Cu adsorption–desorption by clinoptilolite. Microporous and Mesoporous Materials 58(2):115–130

    Article  CAS  Google Scholar 

  • Engates KE (2010) Characterization, sorption, and exhaustion of metal oxide nanoparticles as metal adsorbents. Ph.D., The University of Texas at San Antonio

  • Engates K, Shipley H (2011) Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ Sci Pollut Res 18(3):386–395

    Article  CAS  Google Scholar 

  • Fan Q, Shao D, Lu Y, Wu W, Wang X (2009) Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni(II) to Na–attapulgite. Chem Eng J 150(1):188–195

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418

    Article  CAS  Google Scholar 

  • Gao Y, Kan AT, Tomson MB (2003) Critical evaluation of desorption phenomena of heavy metals from natural sediments. Environ Sci Technol 37(24):5566–5573

    Article  CAS  Google Scholar 

  • Gao Y, Wahi R, Kan A, Falkner J, Colvin V, Tomson M (2004) Adsorption of cadmium on anatase nanoparticles—effect of crystal size and pH. Langmuir 20(22):9585–9593

    Article  CAS  Google Scholar 

  • Gedik K, Imamoglu I (2008) Removal of cadmium from aqueous solutions using clinoptilolite: influence of pretreatment and regeneration. J Hazard Mater 155(1–2):385–392

    Article  CAS  Google Scholar 

  • Giammar DE, Maus CJ, Xie L (2007) Effects of particle size and crystalline phase on lead adsorption to titanium dioxide nanoparticles. Environ Eng Sci 24(1):85–95

    Article  CAS  Google Scholar 

  • Grossl PR, Eick M, Sparks DL, Goldberg S, Ainsworth CC (1997) Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environ Sci Technol 31(2):321–326

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008) Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass. J Hazard Mater 154(1–3):347–354

    Article  CAS  Google Scholar 

  • Guzman KAD, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40(24):7688–7693

    Article  Google Scholar 

  • HachCompany (2008) Water analysis handbook. Hach, Loveland

  • Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manage 92(10):2355–2388

    Article  CAS  Google Scholar 

  • Hayes KF, Redden G, Ela W, Leckie JO (1991) Surface complexation models: an evaluation of model parameter estimation using FITEQL and oxide mineral titration data. J Colloid Interface Sci 142(2):448–469

    Article  CAS  Google Scholar 

  • Herbelin A, Westall J (1999) FITEQL 4.0: a computer program for determination of chemical equilibrium constants from experimental data. Department of Chemistry, Oregon State University, Corvallis

  • Hu J (2006) Fundamental investigation on removal and recovery of heavy metals from synthetic wastewater using magnetic nanoparticles. Ph.D., Hong Kong University of Science and Technology (Hong Kong)

  • Hu J, Shipley HJ (2012) Evaluation of desorption of Pb (II), Cu (II) and Zn (II) from titanium dioxide nanoparticles. Sci Total Environ 431:209–220

    Article  CAS  Google Scholar 

  • Hu J, Chen G, Lo IMC (2006) Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J Environ Eng 132(7):709–715

    Article  CAS  Google Scholar 

  • Katsou E, Malamis S, Tzanoudaki M, Haralambous KJ, Loizidou M (2011) Regeneration of natural zeolite polluted by lead and zinc in wastewater treatment systems. J Hazard Mater 189(3):773–786

    Article  CAS  Google Scholar 

  • Kim MS, Hong KM, Chung JG (2003) Removal of Cu (II) from aqueous solutions by adsorption process with anatase-type titanium dioxide. Water Res 37(14):3524–3529

    Article  CAS  Google Scholar 

  • Kobya M, Demirbas E, Senturk E, Ince M (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol 96(13):1518–1521

    Article  CAS  Google Scholar 

  • Lezcano JM, González F, Ballester A, Blázquez ML, Muñoz JA, García-Balboa C (2011) Sorption and desorption of Cd, Cu and Pb using biomass from an eutrophized habitat in monometallic and bimetallic systems. J Environ Manage 92(10):2666–2674

    Article  CAS  Google Scholar 

  • Li J, Hu J, Sheng G, Zhao G, Huang Q (2009) Effect of pH, ionic strength, foreign ions and temperature on the adsorption of Cu(II) from aqueous solution to GMZ bentonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 349(1–3):195–201

    Article  CAS  Google Scholar 

  • Machida M, Kikuchi Y, Aikawa M, Tatsumoto H (2004) Kinetics of adsorption and desorption of Pb (II) in aqueous solution on activated carbon by two-site adsorption model. Colloids and Surfaces A: Physicochemical and Engineering Aspects 240(1):179–186

    Article  CAS  Google Scholar 

  • Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58(1):224–231

    Article  CAS  Google Scholar 

  • Şengil İA, Özacar M (2009) Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin. J Hazard Mater 166(2–3):1488–1494

    Google Scholar 

  • Shipley HJ, Yean S, Kan A, Tomson M (2009) Adsorption of arsenic to magnetite nanoparticles: effect of particle concentration, ph, ionic strength, and temperature. Environ Toxicol Chem 28(3):509–515

    Article  CAS  Google Scholar 

  • Stone AT, Torrents A, Smolen J, Vasudevan D, Hadley J (1993) Adsorption of organic compounds possessing ligand donor groups at the oxide/water interface. Environ Sci Technol 27(5):895–909

    Article  CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48

    Article  Google Scholar 

  • Trivedi P, Axe L (2000) Modeling Cd and Zn sorption to hydrous metal oxides. Environ Sci Technol 34(11):2215–2223

    Article  CAS  Google Scholar 

  • US EPA (2009) Nanomaterial case studies: Nanoscale titanium dioxide (external review draft). US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Vohra MS, Davis AP (1998) Adsorption of Pb (II), EDTA, and Pb (II)-EDTA onto TiO2. J Colloid Interface Sci 198(1):18–26

    Article  CAS  Google Scholar 

  • Yang JK, Davis AP (1999) Competitive adsorption of Cu (II)-EDTA and Cd (II)-EDTA onto TiO2. J Colloid Interface Sci 216(1):77–85

    Article  CAS  Google Scholar 

  • Yang JK, Lee SM (2005) EDTA effect on the removal of Cu (II) onto TiO2. J Colloid Interface Sci 282(1):5–10

    Article  CAS  Google Scholar 

  • Yang Y, Chen H, Pan G (2007) Particle concentration effect in adsorption/desorption of Zn(II) on anatase type nano TiO2. J Environ Sci 19(12):1442–1445

    Article  CAS  Google Scholar 

  • Zeng G, Pang Y, Zeng Z, Tang L, Zhang Y, Liu Y, Zhang J, Lei X, Li Z, Xiong Y, Xie G (2011) Removal and recovery of Zn2+ and Pb2+ by imine-functionalized magnetic nanoparticles with tunable selectivity. Langmuir 28(1):468–473

    Article  Google Scholar 

  • Zhang W-X (2003) Nanoscale iron particles for environmental remediation: an overview. Journal of Nanoparticle Research 5(3):323–332

    Article  CAS  Google Scholar 

  • Zhang L, Fang M (2010) Nanomaterials in pollution trace detection and environmental improvement. Nano Today 5(2):128–142

    Article  CAS  Google Scholar 

  • Zhou Y-T, Nie H-L, Branford-White C, He Z-Y, Zhu L-M (2009) Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. J Colloid Interface Sci 330(1):29–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the National Science Foundation through the Broadening Participation Research Initiation Grants in Engineering (EEC-0823685) and the Civil and Environmental Engineering Program at the University of Texas at San Antonio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxuan Hu.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Shipley, H.J. Regeneration of spent TiO2 nanoparticles for Pb (II), Cu (II), and Zn (II) removal. Environ Sci Pollut Res 20, 5125–5137 (2013). https://doi.org/10.1007/s11356-013-1502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1502-7

Keywords

Navigation