Skip to main content
Log in

Deformation of a Convex Hydrogel Shell by Parallel Plate and Central Compression

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

To characterize the materials parameters and deformation of a convex shell of axial symmetry, a hydrogel contact lens is mechanically deformed by two loading configurations: (a) compression between two parallel plates and (b) central load applied by a shaft with a spherical tip. A universal testing machine with nano-Newton and submicron resolutions is used to measure the applied force, F, as a function of vertical displacement of the plate/shaft, w 0, while a homemade laser aided topography system records the in-situ deformed shell profile and the contact radius or central dimple, a. A nonlinear shell theory and an iterative finite difference method are used to account for the large elastic deformation, the central buckling for the central load compression, and the interrelationship between the measureable quantities (F, w 0, a).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ashby MF (2005) Materials selection in mechanical design, 3rd edn. Butterworth-Heinemann, Woburn

    Google Scholar 

  2. Reissner E (1950) On axisymmetric deformations of thin shells of revolution. Proceedings of Symposia in Applied Mathematics, American Mathematics Society, Providence 3:27–52

    MathSciNet  Google Scholar 

  3. Reissner E (1946) Stress and small displacements of shallow spherical shells. J Math Phys 25:80–85

    MathSciNet  MATH  Google Scholar 

  4. Ashwell DG (1960) On the large deflection of a spherical shell with an inward point load. Proceedings of I.U.T.A.M. Symposium on the Theory of Thin Elastic Shells, Delft, August 1959, pp 43–63

  5. Ranjan G, Steele C (1997) Large deflection of deep spherical shells under concentrated load. Proceedings. AIAA J/ASME 18th Structures. Structural Dynamics and Materials Conference. San Diego, California. Technical paper no 77-411 269–278.

  6. Taber LA (1982) Large deflection of a fluid-filled spherical shell under a point load. J Appl Mech 49:121–128

    Article  MATH  Google Scholar 

  7. Taber LA (1983) Compression of fluid-filled spherical shells by rigid indenters. J Appl Mech 50:717–722

    Article  Google Scholar 

  8. Cagan J, Taber LA (1986) Large deflection stability of spherical shells with ring loads. J Appl Mech 53(4):897–901. doi:10.1115/1.3171878

    Article  MATH  Google Scholar 

  9. Updike DP, Kalnins A (1970) Axisymmetric behavior of an elastic spherical shell compressed between rigid plates. J Appl Mech 37(3):635–640. doi:10.1115/1.3408592

    Article  Google Scholar 

  10. Reissner E (1950) On axisymmetric deformations of thin shells of revolution. Proceedings of Symposia in Applied Mathematics 3:27–52

    MathSciNet  Google Scholar 

  11. Essenburg F (1960) On a class of nonlinear axisymmetric plate problems. J Appl Mech 27:677–680

    Article  MathSciNet  MATH  Google Scholar 

  12. Updike D, Kalnins A (1972) Contact pressure between an elastic spherical shell and a rigid plate. J Appl Mech 39(4):1110–1114

    Article  Google Scholar 

  13. Kalnins A, Lestingi JF (1967) On nonlinear analysis of elastic shells of revolution. J Appl Mech 89:59–64

    Article  Google Scholar 

  14. Vaziri A (2009) Mechanics of highly deformed elastic shells. Thin-Walled Structures 47(6–7):692–700. doi:10.1016/j.tws.2008.11.009

    Article  Google Scholar 

  15. Tranoudis I, Efron N (2004) Tensile properties of soft contact lens materials. Contact Lens & Anterior Eye 27:177–191

    Article  Google Scholar 

  16. Osborn K, Veys J (2005) A new silicone hydrogel lens for contact lens-related dryness Material properties. Optician 229(6004):39–41

    Google Scholar 

  17. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  18. Chen X, Dunn AC, Sawyer WG, Sarntinoranont M (2007) A biophasic model for micro-indentation of a hydrogel-based contact lens. J Biomech Eng 129(2):156–163. doi:10.1115/1.2472373

    Article  Google Scholar 

  19. Lee SJ, Bourne GR, Chen X, Sawyer WG, Sarntinoranont M (2008) Mechanical characterization of contact lenses by microindentation: Constant velocity and relaxation testing. Acta Biomater 4(5):1560–1568. doi:10.1016/j.actbio.2008.02.021

    Article  Google Scholar 

  20. Mow V, Lai W, Hou J (1990) A triphasic theory for the swelling properties of hydrated charged soft biological tissues. Appl Mech Rev 43:S134–141

    Article  Google Scholar 

  21. Seide P (1975) Small elastic deformations of thin shells. Noordhoff, Leyden

    Book  MATH  Google Scholar 

  22. Flugge W (1973) Stresses in shells. Springer, New York

    Google Scholar 

  23. Calladine C (1983) Theory of shell structures. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  24. Landau LD, Pitaevskii LP, Lifshitz EM, Kosevich AM (1986) Theory of elasticity, 3rd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  25. Timoshenko SP, Gere JM (2009) Theory of elastic stability. Dover, New York

    Google Scholar 

  26. Taber LA (2001) Biomechanics of cardiovascular development. Annu Rev Biomed Eng 3:1–25

    Article  Google Scholar 

  27. Aktas Z, Stetter H (1977) A classification and survey of numerical methods for boundary value problems in ordinary differential equations. Int J Numer Meth Eng 11:771–796

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by Johnson & Johnson Vision Care, Inc. We are grateful to Drs. John Enns and Annabelle Gallois at J&J for invaluable discussions and technical support. This work was also partially sponsored by the National Science Foundation through Grant CMMI # 0757140. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF. We also thank Professor Andrew Gouldstone and Dr. Maricris Silva of Northeastern University for her assistance in measuring the thickness of the contact lenses using optical coherence tomography (OCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-T. Wan.

Appendix

Appendix

Nomenclature

ϕ0 :

angle between the outer normal of shell element and symmetry axis of non-deformed shell

ϕ:

angle between the outer normal of shell element and symmetry axis of deformed shell

\( \phi^{*}_{0} \) :

denotes value of ϕ0 at the contact edge

\( \phi^{\dag}_{0} \) :

denotes value of ϕ0 at the base of the shell

β:

rotation of normal

r 0 :

distance from symmetry axis before deformation

R :

radius of undeformed shell

c :

radius of the base of the shell

E :

Young’s modulus

v :

Poisson’s ratio

t :

thickness of shell

K :

Et / (1- v 2)

D :

Et 3/ 12(1- v 2)

F :

total load on shell

\( {{\text{e}}_\phi },{{\text{e}}_\theta } \) :

meridional and circumferential strain

\( {{\text{k}}_\phi },{{\text{k}}_\theta } \) :

meridional and circumferential bending curvature

w, u :

deflection parallel and perpendicular to axis of symmetry

V, H :

stress resultants parallel and perpendicular to axis of symmetry

p V , p H :

surface loads parallel and perpendicular to axis of symmetry

\( {N_\phi },{N_\theta } \) :

meridional and circumferential stress resultants

\( {M_\phi },{M_\theta } \) :

meridional and circumferential moment resultant

Q :

transverse shear resultants

Numerical Method

Finite difference method is employed here to solve this boundary boundary-value problem governed by a system of first order ordinary differential equations (ODE) [27]. A two point boundary value problem in the interval I = [c 1, c 2] can be defined by a system of first-order ODEs and boundary conditions as follows.

$$ \frac{{dy({\varphi_0})}}{{d{\varphi_0}}} = f\left( {{\varphi_0},y({\varphi_0})} \right)\quad {\text{and}}\quad {r_B}\left( {y({c_1}),y({c_2})} \right) = 0 $$
(17)

The interval I is divided into M segments uniformly and the choice of M should be a sufficiently large number to guarantee the accuracy of the solution. I m  = [c m-1, c m ] denotes one specific segment where m = 1…M. For the shell problem described by equations (1-5), the boundary-value problem is stated in terms of the six unknowns, y = {w u β V HM ϕ}. Equations (1-5) are rearranged in the form in equation (17) as follows.

$$ \begin{array}{*{20}{c}} {\frac{{dw}}{{d{\varphi_0}}} = R\left( {{\varepsilon_\varphi }\sin \varphi - {\kappa_\theta }{r_0}} \right)} \\ {\frac{{du}}{{d{\varphi_0}}} = R\left( {{ }{\varepsilon_\varphi }\cos \varphi + 2\sin (\beta /2)\sin ({\varphi_0} - \beta /2){ }} \right)} \\ {\frac{{d\beta }}{{d{\varphi_0}}} = R{\kappa_\varphi }} \\ {\frac{{dV}}{{d{\varphi_0}}} = - \frac{{{r_1}}}{r}V - \alpha {p_V}} \\ {\frac{{dH}}{{d{\varphi_0}}} = - \frac{{{r_1}}}{r}H + \frac{{\alpha {N_\theta }}}{r} - \alpha {p_H}} \\ {\frac{{d{M_\varphi }}}{{d{\varphi_0}}} = - \frac{{{r_1}}}{r}{ }{M_\varphi } + \frac{{\alpha \cos \varphi }}{r}{M_\theta } - \alpha \left( {H\sin \varphi - V\cos \varphi } \right)} \\ \end{array} $$
(18)

Using the (implicit) trapezoidal rule, the residual vector \( {\psi_m} \) for a segment I m is defined as follows.

$$ {\psi_m}\left( {{y_m},{y_{m - 1}}} \right) = \frac{{{y_m} - {y_{m - 1}}}}{{\Delta {\varphi_0}}} - \frac{1}{2}\left[ {f\left( {{\varphi_{m - 1}},{y_{m - 1}}} \right) + f\left( {{\varphi_m},{y_m}} \right)} \right] = 0 $$
(19)

where ϕ m represents the terms on the right hand side of equation (18). Considering the finite difference segmentation of the entire shell one would get (M + 1) vector equations for the (M + 1) vectors y 0, y 1, …, y M each having 6 unknowns. For the solution of the large system of non-linear equations (19), Newton’s method is employed. A multivariable Taylor series expansion of the residual form of equation (19) is used to linearize the system. When all of the segments are considered the system of equations is expressed in the following form.

$$ {[D{\psi_y}]^{(i)}}{\{ \Delta y{\text{\} }}^{(i + 1)}} = - {\{ \psi \}^{(i)}} $$
(20)

where the superscript i indicates solution iteration level, and {∆y}(i+1) is the correction to the dof vector between the iterations. The Jacobian matrix D ψ y is defined as

$$ D{\psi_y} = \left[ {\begin{array}{*{20}{c}} { - \left[ {I + \frac{{\Delta {\varphi_1}}}{2}{{\left( {\frac{{\partial f}}{{\partial {y_0}}}} \right)}_{{\varphi_0}}}} \right]} & {\left[ {I - \frac{{\Delta {\varphi_1}}}{2}{{\left( {\frac{{\partial f}}{{\partial {y_1}}}} \right)}_{{\varphi_1}}}} \right]} & {} & {} & {} \\ {} & { - \left[ {I + \frac{{\Delta {\varphi_2}}}{2}{{\left( {\frac{{\partial f}}{{\partial {y_1}}}} \right)}_{{\varphi_1}}}} \right]} & {\left[ {I - \frac{{\Delta {\varphi_2}}}{2}{{\left( {\frac{{\partial f}}{{\partial {y_2}}}} \right)}_{{\varphi_2}}}} \right]} & {} & {} \\ {} & {} & \ddots & \ddots & {} \\ {} & {} & { - \left[ {I + \frac{{\Delta {\varphi_M}}}{2}{{\left( {\frac{{\partial f}}{{\partial {y_{M - 1}}}}} \right)}_{{\varphi_{m - 1}}}}} \right]} & {\left[ {I - \frac{{\Delta {\varphi_M}}}{2}{{\left( {\frac{{\partial f}}{{\partial {y_M}}}} \right)}_{{\varphi_m}}}} \right]} & {} \\ {\frac{{\partial r}}{{\partial {y_0}}}} & {} & {} & {\frac{{\partial r}}{{\partial {y_M}}}} & {} \\ \end{array} } \right] $$
(21)

To calculate Jacobian matrix (21), equation (18) is differentiated with respect to each of the unknown variables, i.e. {w u β V HM ϕ}T. The prime below denotes derivative respect to any one of the six variables. Thus,

$$ \begin{gathered} \begin{array}{*{20}{c}} {\frac{{dw\prime }}{{d{\varphi_0}}} = \alpha \prime \sin \varphi + \alpha \varphi \prime \cos \varphi } \\ {\frac{{du\prime }}{{d{\varphi_0}}} = \alpha \prime \cos \varphi + \alpha \varphi \prime \sin \varphi } \\ {\frac{{d\beta \prime }}{{d{\varphi_0}}} = R\kappa_\varphi^\prime } \\ {\frac{{dV\prime }}{{d{\varphi_0}}} = - \frac{{r_1^\prime }}{r}{ }V - \frac{{{r_1}}}{r}V\prime + \frac{{{r_1}r\prime }}{{{r^2}}}V - \alpha \prime {p_V}} \\ {\frac{{dH\prime }}{{d{\varphi_0}}} = - \frac{{r_1^\prime }}{r}H - \frac{{{r_1}}}{r}H\prime + \frac{{{r_1}r\prime }}{{{r^2}}}H + \frac{{\alpha \prime {N_\theta }}}{r}{ } + { }\frac{{\alpha N_\theta^\prime }}{r} - \frac{{\alpha r\prime {N_\theta }}}{{{r^2}}} - \alpha \prime {p_H}} \\ {\frac{{dM_\varphi^\prime }}{{d{\varphi_0}}} = - { }\frac{{r_1^\prime {M_\varphi }}}{r}{ } - { }\frac{{{r_1}M_\varphi^\prime }}{r}{ } + { }\frac{{{r_1}r\prime }}{{{r^2}}}{M_\varphi } + \frac{{\alpha \prime \cos \varphi }}{r}{M_\theta } - \frac{{\alpha { }\varphi \prime \sin \varphi }}{r}{ }{M_\theta } + \frac{{\alpha \cos \varphi }}{r}M_\theta^\prime - \frac{{\alpha { }r\prime \cos \varphi }}{{{r^2}}}{M_\theta } - \alpha \prime H\sin \varphi - \alpha H\prime \sin \varphi - \alpha H{ }\varphi \prime \cos \varphi + \alpha \prime V\cos \varphi + \alpha V\prime \cos \varphi + \alpha V{ }\varphi \prime \sin \varphi } \\ \end{array} \hfill \\ \frac{{dM_\varphi^\prime }}{{d{\varphi_0}}} = - \frac{{r_1^\prime {M_\varphi }}}{r} - \frac{{{r_1}M_\varphi^\prime }}{r} + \frac{{{r_1}r\prime }}{{{r^2}}}{M_\varphi } + \frac{{\alpha \prime \cos \varphi }}{r}{M_\theta } - \frac{{\alpha { }\varphi \prime \sin \varphi }}{r}{ }{M_\theta } + \frac{{\alpha \cos \varphi }}{r}M_\theta^\prime - \frac{{\alpha { }r\prime \cos \varphi }}{{{r^2}}}{M_\theta } - \alpha \prime H\sin \varphi - \alpha { }H\prime \sin \varphi - \alpha { }H{ }\varphi \prime \cos \varphi + \alpha \prime V\cos \varphi + \alpha { }V\prime \cos \varphi + \alpha { }V{ }\varphi \prime \sin \varphi \hfill \\ \end{gathered} $$
(22)

where

$$ \begin{array}{*{20}{c}} {\varepsilon_\theta^\prime = u\prime /{r_0}} \\ {\varphi \prime = - \beta \prime } \\ {\kappa_\theta^\prime = - { }\varphi \prime \cos \varphi /{r_0}} \\ {{N_\varphi } = { }H\prime \cos \varphi { } - { }H\varphi \prime \sin \varphi + V\prime \sin \varphi + V\varphi \prime \cos \varphi } \\ {\varepsilon_\varphi^\prime = N_\varphi^\prime /K - \nu \varepsilon_\theta^\prime } \\ {\kappa_\varphi^\prime = M_\varphi^\prime /D - \nu \kappa_\theta^\prime } \\ {N_\theta^\prime = K\left( {\varepsilon_\theta^\prime + \nu \varepsilon_\theta^\prime } \right)} \\ {M_\theta^\prime = D\left( {\kappa_\theta^\prime + \nu \kappa_\theta^\prime } \right)} \\ {\alpha \prime = R\varepsilon_\varphi^\prime } \\ {r\prime = u\prime } \\ {r_1^\prime = \alpha \prime \cos \varphi - \alpha { }\varphi \prime \sin \varphi } \\ \end{array} $$

The solution algorithm is shown in Fig. 6, a constant relaxation coefficient C, with a value between 0 and 1, is employed in some cases to help converge.

Fig. 6
figure 6

Algorithm for finite difference computation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Robitaille, M., Muftu, S. et al. Deformation of a Convex Hydrogel Shell by Parallel Plate and Central Compression. Exp Mech 52, 539–549 (2012). https://doi.org/10.1007/s11340-011-9514-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-011-9514-z

Keywords

Navigation