Skip to main content
Log in

An Instrumental Variable Estimator for Mixed Indicators: Analytic Derivatives and Alternative Parameterizations

  • Theory and Methods
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Methodological development of the model-implied instrumental variable (MIIV) estimation framework has proved fruitful over the last three decades. Major milestones include Bollen’s (Psychometrika 61(1):109–121, 1996) original development of the MIIV estimator and its robustness properties for continuous endogenous variable SEMs, the extension of the MIIV estimator to ordered categorical endogenous variables (Bollen and Maydeu-Olivares in Psychometrika 72(3):309, 2007), and the introduction of a generalized method of moments estimator (Bollen et al., in Psychometrika 79(1):20–50, 2014). This paper furthers these developments by making several unique contributions not present in the prior literature: (1) we use matrix calculus to derive the analytic derivatives of the PIV estimator, (2) we extend the PIV estimator to apply to any mixture of binary, ordinal, and continuous variables, (3) we generalize the PIV model to include intercepts and means, (4) we devise a method to input known threshold values for ordinal observed variables, and (5) we enable a general parameterization that permits the estimation of means, variances, and covariances of the underlying variables to use as input into a SEM analysis with PIV. An empirical example illustrates a mixture of continuous variables and ordinal variables with fixed thresholds. We also include a simulation study to compare the performance of this novel estimator to WLSMV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Our notation is similar to the LISREL notation of Joreskog & Sorbom (1978) except that we do not include exogenous latent variables and their corresponding indicators and we use \(\mathbf {y}^{*}\) instead of y to refer to the underlying indicators of \(\varvec{\eta }\).

References

  • Arminger, G., & Küsters, U. (1988). Latent trait models with indicators of mixed measurement level. In R. Langeheine & J. Rost (Eds.), Latent trait and latent class models (pp. 51–73). Boston, MA: Springer.

    Chapter  Google Scholar 

  • Bock, D. R. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37(1), 29–51.

    Article  Google Scholar 

  • Bollen, K. A. (1996). An alternative two stage least squares (2sls) estimator for latent variable equations. Psychometrika, 61(1), 109–121.

    Article  Google Scholar 

  • Bollen, K. A., Kolenikov, S., & Bauldry, S. (2014). Model-implied instrumental variable-generalized method of moments (MIIV-GMM) estimators for latent variable models. Psychometrika, 79(1), 20–50.

    Article  PubMed  Google Scholar 

  • Bollen, K. A., & Maydeu-Olivares, A. (2007). A polychoric instrumental variable (PIV) estimator for structural equation models with categorical variables. Psychometrika, 72(3), 309–326.

    Article  Google Scholar 

  • Cragg, J. G., & Donald, S. G. (1993). Testing identifiability and specification in instrumental variable models. Econometric Theory, 9(2), 222–240.

    Article  Google Scholar 

  • Cramér, H. (1999). Mathematical methods of statistics. Princeton: Princeton University Press.

    Google Scholar 

  • Fisher, Z., Bollen, K., Gates, K., & Rönkkö, M. (2017). Miivsem: Model implied instrumental variable (miiv) estimation of structural equation models. r package version 0.5. 2.

  • Fisher, Z. F., Bollen, K. A., & Gates, K. M. (2019). A limited information estimator for dynamic factor models. Multivariate Behavioral Research, 54(2), 246–263. https://doi.org/10.1080/00273171.2018.1519406.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50(4), 1029–1054.

    Article  Google Scholar 

  • Hayashi, F. (2011). Econometrics. Princeton: Princeton University Press.

    Google Scholar 

  • Jin, S., & Cao, C. (2018). Selecting polychoric instrumental variables in confirmatory factor analysis: An alternative specification test and effects of instrumental variables. British Journal of Mathematical and Statistical Psychology, 71(2), 387–413.

    Article  PubMed  Google Scholar 

  • Jin, S., Luo, H., & Yang-Wallentin, F. (2016). A simulation study of polychoric instrumental variable estimation in structural equation models. Structural Equation Modeling, 23(5), 680–694.

    Article  Google Scholar 

  • Jöreskog, K. G. (1994). On the estimation of polychoric correlations and their asymptotic covariance matrix. Psychometrika, 59(3), 381–389.

    Article  Google Scholar 

  • Jöreskog, K. G. (2002). Structural Equation Modeling with Ordinal Variables using LISREL. Scientific Software International, Inc.

  • Katsikatsou, M., Moustaki, I., Yang-Wallentin, F., & Jöreskog, K. G. (2012). Pairwise likelihood estimation for factor analysis models with ordinal data. Computational Statistics & Data Analysis, 56(12), 4243–4258.

    Article  Google Scholar 

  • Kirby, J. B., & Bollen, K. A. (2009). Using instrumental variable (IV) tests to evaluate model specification in latent variable structural equation models. Sociological Methodology, 39(1), 327–355.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lazarsfeld, P. F. (1950). The logical and mathematical foundation of latent structure analysis. Studies in Social Psychology in World War II Vol. IV : Measurement and Prediction, 4, 362–412.

    Google Scholar 

  • Lee, S.-Y., Poon, W.-Y., & Bentler, P. M. (1995). A two-stage estimation of structural equation models with continuous and polytomous variables. British Journal of Mathematical and Statistical Psychology, 48(2), 339–358.

    Article  PubMed  Google Scholar 

  • Lord, F., Novick, M., & Birnbaum, A. (1968). Statistical theories of mental test scores. Oxford: Addison-Wesley.

    Google Scholar 

  • Magnus, J. R. (1983). L-structured matrices and linear matrix equations. Linear and Multilinear Algebra, 14(1), 67–88.

    Article  Google Scholar 

  • Magnus, J. R., & Neudecker, H. (1986). Symmetry, 0–1 matrices and Jacobians: A review. Econometric Theory, 2(2), 157–190.

    Article  Google Scholar 

  • Monroe, S. (2018). Contributions to estimation of polychoric correlations. Multivariate Behavioral Research, 53(2), 247–266.

    Article  PubMed  Google Scholar 

  • Muthén, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43(4), 551–560.

    Article  Google Scholar 

  • Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49(1), 115–132.

    Article  Google Scholar 

  • Muthén, B. (1993). Latent trait models with indicators of mixed measurement level. Testing structural equation models. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Muthén, B., & Satorra, A. (1995). Technical aspects of Muthén’s liscomp approach to estimation of latent variable relations with a comprehensive measurement model. Psychometrika, 60(4), 489–503.

    Article  Google Scholar 

  • Nel, D. G. (1980). On matrix differentiation in statistics. South African Statistical Journal, 14(2), 137–193.

    Google Scholar 

  • Nestler, S. (2013). A Monte Carlo study comparing PIV, ULS and DWLS in the estimation of dichotomous confirmatory factor analysis. British Journal of Mathematical and Statistical Psychology, 66(1), 127–143.

    Article  PubMed  Google Scholar 

  • Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44(4), 443–460.

    Article  Google Scholar 

  • Phillips, P. C. B. (1989). Partially identified econometric models. Econometric Theory, 5(2), 181–240.

    Article  Google Scholar 

  • Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36.

    Article  Google Scholar 

  • Savalei, V., & Falk, C. F. (2014). Robust two-stage approach outperforms robust full information maximum likelihood with incomplete nonnormal data. Structural Equation Modeling, 21(2), 280–302.

    Article  Google Scholar 

  • Shea, J. (1997). Instrument relevance in multivariate linear models: A simple measure. The Review of Economics and Statistics, 79(2), 348–352.

    Article  Google Scholar 

  • Stock, J. H., & Yogo, M. (2005). Testing for weak instruments in linear IV regression. In J. H. Stock & D. W. K. Andrews (Eds.), Identification and inference for econometric models: Essays in honor of Thomas J. Rothenberg. Cambridge: Cambridge University Press.

    Google Scholar 

  • Thurstone, L. (1925). A method of scaling psychological and educational tests. Journal of Educational Psychology, 16(7), 433–451.

    Article  Google Scholar 

  • Yang-Wallentin, F., Jöreskog, K. G., & Luo, H. (2010). Confirmatory factor analysis of ordinal variables with misspecified models. Structural Equation Modeling, 17(3), 392–423.

    Article  Google Scholar 

  • Yuan, K.-H., & Bentler, P. M. (2000). Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. Sociological Methodology, 30, 165–200.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary F. Fisher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Notation and Algebraic Results

Appendix: Notation and Algebraic Results

1.1 Vec and Related Operators

Our derivations make use of the \(\mathrm {vec}\) and related operators for transforming a matrix into a vector. Although these operators are commonly encountered in multivariate analysis there representations vary considerably by author. For this reason, we will provide definitions corresponding to our own usage. For a \(p \times q\) matrix, \(\mathbf {X}\), the \(\mathrm {vec}\) operator is used to stack columnwise the q columns of \(\mathbf {X}\) into a \(pq \times 1\) vector without regard for any repeated or constant elements. Consider the matrix \(\mathbf {A}_{p,q}\), where \(\mathbf {a}_{1},\dots , \mathbf {a}_{q}\) are the columns of \(\mathbf {A}_{p,q}\) taken in lexicon order then \(\mathrm {vec}\,\mathbf {A}_{p,q} = [\mathbf {a}_{1}, \dots ,\mathbf {a}_{q} ]^{'}\).

The \(\upsilon (\cdot )\) operator is also used heavily in these derivations. Here, \(\upsilon (\cdot )\), can be understood as a generalization of the \(\mathrm {vech}(\cdot )\) (vector-half) operator for symmetric matrices, or the \(\mathrm {vecp}(\cdot )\) operator for strictly lower-triangular matrices, to any patterned matrix. A \(p \times q\) matrix is labeled patterned if it contains \(p^{*}=pq-s-v\) mathematically independent and variable elements, where s and v are the number of repeated, and constant elements, respectively. Covariance and correlation matrices are two examples of patterned matrices. For a \(p \times p\) covariance matrix, \(\mathbf {S}\), \(p^{*} = 1/2p(p+1)\), \(s = 1/2p(p+1)\), and \(v=0\). Likewise, for the \(p \times p\) correlation matrix, \(\mathbf {P}\), \(p^{*} = 1/2p(p-1)\), \(s = 1/2p(p-1)\), and \(v=p\). Consider the covariance matrix, \(\mathbf {S}_{2,2}\), then \(\upsilon (\mathbf {S})=[{s}_{1,1}, {s}_{2,1}, {s}_{2,2}]^{'}\). Similarly, for the correlation matrix, \(\mathbf {P}_{2,2}\), \(\upsilon (\mathbf {P})=[{s}_{2,1}]^{'}\). Generally, for any patterned matrix \(\mathbf {X}_{p,q}\), \(\upsilon (\mathbf {X})\) will be a \(p^{*} \times 1\) vector.

1.2 The Kronecker Product

For the matrices \(\mathbf {X}_{p,q}\) and \(\mathbf {A}_{r,s}\), we define the Kronecker product as \(\mathbf {X} \otimes \mathbf {B} = (x_{i,j}\mathbf {A})_{pr \times qs}\), for \(i =1,\dots ,p\) and \(j =1,\dots ,q\). A useful result linking the Kronecker product to the \(\mathrm {vec}\) operator states \(\mathrm {vec}(\mathbf {A}_{m,n}\mathbf {B}_{n,q}\mathbf {C}_{q,r}) = (\mathbf {C}^{'} \otimes \mathbf {A})\mathrm {vec}\mathbf {B}\). Other useful properties of the Kronecker product utilized in these derivations for simplifying resultant expressions are \((\mathbf {A} \otimes \mathbf {B}) (\mathbf {C} \otimes \mathbf {D}) = \mathbf {AC} \otimes \mathbf {BD}\) and \((\mathbf {A} \otimes \mathbf {B})^{'} = \mathbf {A}^{'} \otimes \mathbf {B}^{'}\).

1.3 The Commutation Matrix

Commutation (or vec-permutation) matrices can be used to translate between vectors \(\mathrm {vec}\,\mathbf {X}\) and \(\mathrm {vec}\,\mathbf {X}^{'}\). The vec-permutation operator, \(\mathbf {K}_{p,q}\), is defined such that \(\mathrm {vec}\,\mathbf {X}_{p,q} = \mathbf {K}_{p,q} \mathrm {vec}\,\mathbf {X}^{'}\). The commutation matrix plays a central role in the formulation of matrix derivatives using the vec operator, and the following derivative is used throughout. Consider the \(m \times n\) matrix \(\mathbf {X}\), then \(\partial \mathrm {vec}(\mathbf {X}^{'}) / \partial \mathrm {vec}(\mathbf {X})^{'} = \mathbf {K}_{m,n}\). Note also that \(\partial \mathrm {vec}(\mathbf {X}) / \partial \mathrm {vec}(\mathbf {X})^{'} = \mathbf {I}_{mn}\).

1.4 Matrix Derivatives and L-Structured Matrices

The results herein require taking partial derivatives with respect to lower-triangular, strictly lower-triangular, diagonal and arbitrarily patterned matrices. Furthermore, the solution matrices resulting from these matrix derivatives are themselves often known a priori to be symmetric or patterned. For these reasons, we rely on a number of results detailed by Magnus (1983) and Magnus and Neudecker (1986) for L-structured matrices. The use of L-structures allows us to derive our results in the most general way possible across the different parameterizations available. The following properties of L-Structured matrices are used throughout, \(\mathrm {vec}(\mathbf {X})=\varvec{\Delta }\upsilon (\mathbf {X})\) and \(\upsilon (\mathbf {X})=\varvec{\Delta }^{+}\mathrm {vec}(\mathbf {X})\).

It is useful to consider \(\varvec{\Delta }\) as a generalized duplication matrix, and \(\varvec{\Delta }^{+}\) as a generalized elimination matrix. If \(\mathbf {X}\) is a symmetric \(\varvec{\Delta }\) is \(p^2 \times p(p+1)/2\), while \(\varvec{\Delta }\) is \(p^2 \times p(p-1)/2\) if \(\mathbf {X}\) is strictly lower-triangular. The most interesting case occurs when \(\mathbf {X}\) exhibits an arbitrary constellation of free, fixed, and repeating elements. In this case, a general method is needed for constructing \(\varvec{\Delta }\) and \(\varvec{\Delta }^{+}\) when the specific patterning of \(\mathbf {X}\) is unknown (prior to the analysis). Fortunately, a result for this specific case was derived by Nel (1980, Definition 6.1.1). In the case of arbitrary patterning, \(\varvec{\Delta }\) is \(p^2 \times p^{*}\).

Extending these properties to the case of matrix derivatives, it can be shown that \(\frac{\partial \mathrm {vec} (\mathbf {X})}{\partial \, \upsilon (\mathbf {X})^{'}} = \varvec{\Delta }\) and \( \frac{\partial \,\upsilon (\mathbf {X})}{\partial \, \mathrm {vec} (\mathbf {X})^{'}} = \varvec{\Delta }^{+}\). It follows that if the matrix function \(\mathbf {Z} = f(\mathbf {X})\),

$$\begin{aligned} \frac{\partial \mathrm {vec} (\mathbf {Z})}{\partial \upsilon (\mathbf {X})^{'}}= & {} \frac{\partial \mathrm {vec} (\mathbf {Z})}{\partial \mathrm {vec}(\mathbf {X})^{'}} \frac{\partial \mathrm {vec} (\mathbf {X})}{\partial \upsilon (\mathbf {X})^{'}} = \frac{\partial \mathrm {vec} (\mathbf {Z})}{\partial \mathrm {vec}(\mathbf {X})^{'}} \varvec{\Delta }, \end{aligned}$$
(38)

and if \(\mathbf {Z}\) is also patterned,

$$\begin{aligned} \frac{\partial \upsilon (\mathbf {Z})}{\partial \, \upsilon (\mathbf {X})^{'}}= & {} \frac{\partial \upsilon (\mathbf {Z})}{\partial \mathrm {vec}(\mathbf {Z})^{'}} \frac{\partial \mathrm {vec} (\mathbf {Z})}{\partial \mathrm {vec}(\mathbf {X})^{'}} \frac{\partial \mathrm {vec} (\mathbf {X})}{\partial \upsilon (\mathbf {X})^{'}} = \varvec{\Delta }^{+} \frac{\partial \mathrm {vec} (\mathbf {Z})}{\partial \mathrm {vec}(\mathbf {X})^{'}} \varvec{\Delta }. \end{aligned}$$
(39)

1.5 Derivatives of Common Matrix Functions

The following derivatives are used throughout and will be restated here for clarity. For the following results, suppose \(\mathbf {X}\) is \(m \times n\), \(\mathbf {U}\) is \(p \times q\), and \(\mathbf {V}\) is \(q \times r\), where both \(\mathbf {U}\) and \(\mathbf {V}\) are matrix functions of \(\mathbf {X}\), then

$$\begin{aligned} \frac{\partial \,\mathrm {vec}\, (\mathbf {U+V})}{\partial \, \mathrm {vec}\, (\mathbf {X})^{'}}= & {} \frac{\partial \,\mathrm {vec}\, (\mathbf {U})}{\partial \, \mathrm {vec}\, (\mathbf {X})^{'}} + \frac{\partial \,\mathrm {vec}\, (\mathbf {V})}{\partial \, \mathrm {vec}\, (\mathbf {X})^{'}}, \end{aligned}$$
(40)

and

$$\begin{aligned} \frac{\partial \,\mathrm {vec}\, (\mathbf {UV})}{\partial \, \mathrm {vec}\, (\mathbf {X})^{'}}= & {} (\mathbf {V} \otimes \mathbf {I}_{p})^{'} \frac{\partial \,\mathrm {vec}\, (\mathbf {U})}{\partial \, \mathrm {vec}\, (\mathbf {X})^{'}} + (\mathbf {I}_{r} \otimes \mathbf {U} ) \frac{\partial \,\mathrm {vec}\, (\mathbf {V})}{\partial \, \mathrm {vec}\, (\mathbf {X})^{'}}. \end{aligned}$$
(41)

In addition, we state a general rule for taking derivatives of matrix inverses, specifically if \(\mathbf {Y} = \mathbf {X}^{-1}\), then

$$\begin{aligned} \frac{\partial \,\mathrm {vec} (\mathbf {Y})}{\partial \, \mathrm {vec} (\mathbf {X})^{'}}= & {} -(\mathbf {X}^{-1'} \otimes \mathbf {X}^{-1}). \end{aligned}$$
(42)

Now suppose \(\mathbf {X}\) is a symmetric matrix, \(\mathbf {A}\) is a matrix of constants, and \(\mathbf {Y} = \mathbf {X}\mathbf {A}\mathbf {X}\) using successive applications of (41) we can show that,

$$\begin{aligned} \frac{\partial \,\mathrm {vec}(\mathbf {Y})}{\partial \, \mathrm {vec}(\mathbf {X})^{'}}= & {} (\mathbf {AX} \otimes \mathbf {I})^{'} + (\mathbf {I} \otimes \mathbf {XA} ). \end{aligned}$$
(43)

Suppose instead that \(\mathbf {A}\) and \(\mathbf {B}\) are matrices containing constant elements and \(\mathbf {Y} = \mathbf {A}^{'}\mathbf {X}^{-1}\mathbf {B}\), then

$$\begin{aligned} \frac{\partial \,\mathrm {vec}(\mathbf {Y})}{\partial \, \mathrm {vec}(\mathbf {X})^{'}}= & {} -(\mathbf {B}^{'}\mathbf {X}^{-1'} \otimes \mathbf {A}^{'}\mathbf {X}^{-1}). \end{aligned}$$
(44)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fisher, Z.F., Bollen, K.A. An Instrumental Variable Estimator for Mixed Indicators: Analytic Derivatives and Alternative Parameterizations. Psychometrika 85, 660–683 (2020). https://doi.org/10.1007/s11336-020-09721-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-020-09721-6

Keywords

Navigation