Skip to main content
Log in

One-year cessation following resistance training differently affects neuromuscular, body composition, and functional capacity in older adults

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Cessation of resistance training could result in loss of the gains acquired. Therefore, the aim of the current study was to verify the effect of 1-year of detraining following resistance training on body composition, functional capacity, handgrip strength, localized muscular endurance, and countermovement jump performance (CMJ) in older adults. Fifteen participants (4 women and 11 men; 65.5 ± 4.3 years) completed all the procedures over the experimental period. The participants were followed up during a 9-week resistance training program and after 1-year detraining. Measurements included body composition, handgrip strength, localized muscular endurance, stair ascent and descent, timed up-and-go, and CMJ. The resistance training resulted in improvements in skeletal muscle mass, stair ascent and descent, handgrip strength, localized muscular endurance, and CMJ variables. After the detraining period, significant reductions were observed in skeletal muscle mass (Δ = − 0.92 ± 0.58 kg) and CMJ height, velocity, and impulse (Δ = − 3.03 ± 1.83 cm, − 0.063 ± 0.042 m/s, − 6.34 ± 8.49 N·s, respectively) compared to the post-training period, returning to the baseline values. Conversely, stair ascent and descent, handgrip strength, and localized muscular endurance did not differ after the detraining period (p > 0.05). Retention of functional capacity, localized muscular endurance, and handgrip strength improvements were observed. However, skeletal muscle mass and CMJ variables decreased after the detraining period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. da Orssatto LBR, Wiest MJ, Diefenthaeler F (2018) Neural and musculotendinous mechanisms underpinning age-related force reductions. Mech Ageing Dev 175:17–23. https://doi.org/10.1016/j.mad.2018.06.005

    Article  PubMed  Google Scholar 

  2. Byrne C, Faure C, Keene DJ, Lamb SE (2016) Ageing, muscle power and physical function: a systematic review and implications for pragmatic training interventions. Sport Med. https://doi.org/10.1007/s40279-016-0489-x

    Article  Google Scholar 

  3. Syddall H, Cooper C, Martin F et al (2003) Is grip strength a useful single marker of frailty? Age Ageing 32:650–656. https://doi.org/10.1093/ageing/afg111

    Article  PubMed  Google Scholar 

  4. Sasaki H, Kasagi F, Yamada M, Fujita S (2007) Grip strength predicts cause-specific mortality in middle-aged and elderly persons. Am J Med 120:337–342. https://doi.org/10.1016/j.amjmed.2006.04.018

    Article  PubMed  Google Scholar 

  5. Legrand D, Vaes B, Matheï C et al (2014) Muscle strength and physical performance as predictors of mortality, hospitalization, and disability in the oldest old. J Am Geriatr Soc 62:1030–1038. https://doi.org/10.1111/jgs.12840

    Article  PubMed  Google Scholar 

  6. Kelley GA, Kelley KS (2017) Is sarcopenia associated with an increased risk of all-cause mortality and functional disability? Exp Gerontol 96:100–103. https://doi.org/10.1016/j.exger.2017.06.008

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hayashida I, Tanimoto Y, Takahashi Y et al (2014) Correlation between muscle strength and muscle mass, and their association with walking speed, in community-dwelling elderly Japanese individuals. PLoS ONE 9:1–6. https://doi.org/10.1371/journal.pone.0111810

    Article  CAS  Google Scholar 

  8. Pratesi A, Tarantini F, Di Bari M (2013) Skeletal muscle: an endocrine organ. Clin Cases Miner Bone Metab 10:11–14. https://doi.org/10.11138/ccmbm/2013.10.1.011

    Article  PubMed  PubMed Central  Google Scholar 

  9. Larsen AH, Sørensen H, Puggaard L, Aagaard P (2009) Biomechanical determinants of maximal stair climbing capacity in healthy elderly women. Scand J Med Sci Sport 19:678–686. https://doi.org/10.1111/j.1600-0838.2008.00845.x

    Article  CAS  Google Scholar 

  10. Izquierdo M, Aguado X, Gonzalez R et al (1999) Maximal and explosive force production capacity and balance performance in men of different ages. Eur J Appl Physiol Occup Physiol 79:260–267. https://doi.org/10.1007/s004210050504

    Article  CAS  PubMed  Google Scholar 

  11. Borde R, Hortobágyi T, Granacher U (2015) Dose–response relationships of resistance training in healthy old adults: a systematic review and meta-analysis. Sport Med 45:1693–1720. https://doi.org/10.1007/s40279-015-0385-9

    Article  Google Scholar 

  12. da Orssatto LBR, Cadore EL, Andersen LL, Diefenthaeler F (2018) Why fast velocity resistance training should be prioritized for elderly people. Strength Cond J. https://doi.org/10.1519/SSC.0000000000000390

    Article  Google Scholar 

  13. Peterson MD, Sen A, Gordon PM (2011) Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med Sci Sport Exerc 43:249–258. https://doi.org/10.1249/MSS.0b013e3181eb6265.Influence

    Article  Google Scholar 

  14. de Guizelini PC, Aguiar RA, Denadai BS et al (2018) Effect of resistance training on muscle strength and rate of force development in healthy older adults: a systematic review and meta-analysis. Exp Gerontol 102:51–58. https://doi.org/10.1016/j.exger.2017.11.020

    Article  PubMed  Google Scholar 

  15. da Orssatto LBR, de la Freitas CR, Shield AJ et al (2019) Effects of resistance training concentric velocity on older adults’ functional capacity: a systematic review and meta-analysis of randomised trials. Exp Gerontol 127:110731. https://doi.org/10.1016/j.exger.2019.110731

    Article  Google Scholar 

  16. Orssatto LBR, de Bezerra ES, Shield AJ, Trajano GS (2020) Is power training effective to produce muscle hypertrophy in older adults? A systematic review and meta-analysis. Appl Physiol Nutr Metab. https://doi.org/10.1139/apnm-2020-0021

    Article  PubMed  Google Scholar 

  17. Ratamess A, Alvar BA, Evetoch TK et al (2009) American College of Sports Medicine Position Stand: progression models in resistance training for healthy adults. Med Sci Sports Exerc 41:687–708. https://doi.org/10.1249/MSS.0b013e3181915670

    Article  Google Scholar 

  18. Fragala MS, Cadore EL, Dorgo S et al (2019) Resistance training for older adults: position statement from the national strength and conditioning association. J Strength Cond Res 33:2019–2052. https://doi.org/10.1519/JSC.0000000000003230

    Article  PubMed  Google Scholar 

  19. Sakugawa RL, Moura BM, da Orssatto LBR et al (2019) Effects of resistance training, detraining, and retraining on strength and functional capacity in elderly. Aging Clin Exp Res 31:31–39. https://doi.org/10.1007/s40520-018-0970-5

    Article  PubMed  Google Scholar 

  20. Henwood TR, Taaffe DR (2008) Detraining and retraining in older adults following long-term muscle power or muscle strength specific training. J Gerontol Ser A Biol Sci Med Sci 63:751–758. https://doi.org/10.1093/gerona/63.7.751

    Article  Google Scholar 

  21. Pereira A, Izquierdo M, Silva AJ et al (2012) Muscle performance and functional capacity retention in older women after high-speed power training cessation. Exp Gerontol 47:620–624. https://doi.org/10.1016/j.exger.2012.05.014

    Article  PubMed  Google Scholar 

  22. Zech A, Drey M, Freiberger E et al (2012) Residual effects of muscle strength and muscle power training and detraining on physical function in community-dwelling prefrail older adults: a randomized controlled trial. BMC Geriatr 12:68. https://doi.org/10.1186/1471-2318-12-68

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hasselmann V, Oesch P, Fernandez-Luque L, Bachmann S (2015) Are exergames promoting mobility an attractive alternative to conventional self-regulated exercises for elderly people in a rehabilitation setting? Study protocol of a randomized controlled trial. BMC Geriatr 15:108. https://doi.org/10.1186/s12877-015-0106-0

    Article  PubMed  PubMed Central  Google Scholar 

  24. Phillips EM, Schneider JC, Mercer GR (2004) Motivating elders to initiate and maintain exercise. Arch Phys Med Rehabil 85:52–57. https://doi.org/10.1016/j.apmr.2004.03.012

    Article  Google Scholar 

  25. de Bezerra ES, Diefenthaeler F, Sakugawa RL et al (2019) Effects of different strength training volumes and subsequent detraining on strength performance in aging adults. J Bodyw Mov Ther 23:466–472. https://doi.org/10.1016/j.jbmt.2019.01.010

    Article  PubMed  Google Scholar 

  26. de Bezerra ES, da Orssatto LBR, de Moura BM et al (2018) Mixed session periodization as a new approach for strength, power, functional performance, and body composition enhancement in aging adults. J Strength Cond Res 32:2795–2806. https://doi.org/10.1519/JSC.0000000000002752

    Article  PubMed  Google Scholar 

  27. Orange ST, Marshall P, Madden LA, Vince RV (2019) Short-term training and detraining effects of supervised vs. unsupervised resistance exercise in aging adults. J Strength Cond Res 33:2733–2742. https://doi.org/10.1519/JSC.0000000000002536

    Article  PubMed  Google Scholar 

  28. Correa CS, Cunha G, Marques N et al (2016) Effects of strength training, detraining and retraining in muscle strength, hypertrophy and functional tasks in older female adults. Clin Physiol Funct Imaging 36:306–310. https://doi.org/10.1111/cpf.12230

    Article  PubMed  Google Scholar 

  29. Virtuoso Junior JS, Tribess S, Paulo TRSD, Martins CA, Romo-Perez V (2012) Physical activity as an indicator of predictive functional disability in elderly. rev lat-am de enferm 20(2):259–265. https://doi.org/10.1590/S0104-11692012000200007

    Article  Google Scholar 

  30. Kim J, Wang Z, Heymsfield SB et al (2002) Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry method. Am J Clin Nutr 76:378–383

    Article  CAS  PubMed  Google Scholar 

  31. Da Silva ME et al (2018) Reducing measurement errors during functional capacity tests in elders. Aging Clin Exp Res 30:595–603

    Article  PubMed  Google Scholar 

  32. Sousa-Santos AR, Amaral TF (2017) Differences in handgrip strength protocols to identify sarcopenia and frailty—a systematic review. BMC Geriatr. https://doi.org/10.1186/s12877-017-0625-y

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rikli RE, Jones CJ (2013) Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist 53:255–267. https://doi.org/10.1093/geront/gns071

    Article  PubMed  Google Scholar 

  34. Ache-Dias J, Dal Pupo J, Gheller RG et al (2016) Power output prediction from jump height and body mass does not appropriately categorize or rank athletes. J Strength Cond Res 30:818–824. https://doi.org/10.1519/jsc.0000000000001150

    Article  PubMed  Google Scholar 

  35. Kons RL, Ache-Dias J, Detanico D et al (2017) Is vertical jump height an indicator of athletes’power output in different sport modalities? J Strength Cond Res. https://doi.org/10.1098/rsif.2012.0028

    Article  Google Scholar 

  36. https://www.iscd.org/official-positions/2019-iscd-official-positions-adult/

  37. Steenhuis RE, Bryden MP, Schwartz M, Lawson S (1990) Reliability of hand preference items and factors. J Clin Exp Neuropsychol 12:921–930. https://doi.org/10.1080/01688639008401031

    Article  CAS  PubMed  Google Scholar 

  38. de Bezerra ES, da Orssatto LBR, de Moura BM et al (2018) Mixed session periodization as a new approach for strength, power, functional performance, and body composition enhancement in aging adults. J Strength Cond Res. https://doi.org/10.1519/JSC.0000000000002752

    Article  PubMed  Google Scholar 

  39. Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41:3–12. https://doi.org/10.1249/MSS.0b013e31818cb278

    Article  PubMed  Google Scholar 

  40. Santos L, Ribeiro AS, Schoenfeld BJ et al (2017) The improvement in walking speed induced by resistance training is associated with increased muscular strength but not skeletal muscle mass in older women. Eur J Sport Sci 17:488–494. https://doi.org/10.1080/17461391.2016.1273394

    Article  PubMed  Google Scholar 

  41. Lixandrão ME, Damas F, Chacon-Mikahil MPT et al (2016) Time course of resistance training-induced muscle hypertrophy in the elderly. J Strength Cond Res 30:159–163. https://doi.org/10.1519/JSC.0000000000001019

    Article  PubMed  Google Scholar 

  42. Larsson L, Degens H, Li M et al (2019) Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev 99:427–511. https://doi.org/10.1152/physrev.00061.2017

    Article  PubMed  Google Scholar 

  43. Han DS, Chang KV, Li CM et al (2016) Skeletal muscle mass adjusted by height correlated better with muscular functions than that adjusted by body weight in defining sarcopenia. Sci Rep 6:1–8. https://doi.org/10.1038/srep19457

    Article  CAS  Google Scholar 

  44. Anker SD, Morley JE, von Haehling S (2016) Welcome to the ICD-10 code for sarcopenia. J Cachexia Sarcopenia Muscle 7:512–514. https://doi.org/10.1002/jcsm.12147

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis. Age Ageing 39:412–423. https://doi.org/10.1093/ageing/afq034

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cruz-Jentoft AJ, Bahat G, Bauer J et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. https://doi.org/10.1093/ageing/afy169

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lemmer JT, Hurlbut DE, Martel GF et al (2000) Age and gender responses to strength training and detraining. Med Sci Sports Exerc 32:1505–1512. https://doi.org/10.1097/00005768-200008000-00021

    Article  CAS  PubMed  Google Scholar 

  48. Taaffe DR, Marcus R (1997) Dynamic muscle strength alterations to detraining and retraining in elderly men. Clin Physiol 17:311–324. https://doi.org/10.1111/j.1365-2281.1997.tb00010.x

    Article  CAS  PubMed  Google Scholar 

  49. Narici MV, Roi GS, Landoni L et al (1989) Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol Occup Physiol 59:310–319. https://doi.org/10.1007/BF02388334

    Article  CAS  PubMed  Google Scholar 

  50. Andersen LL, Andersen JL, Magnusson SP, Aagaard P (2005) Neuromuscular adaptations to detraining following resistance training in previously untrained subjects. Eur J Appl Physiol 93:511–518. https://doi.org/10.1007/s00421-004-1297-9

    Article  PubMed  Google Scholar 

  51. de Moura BM, Sakugawa RL, da Orssatto LBR et al (2018) Functional capacity improves in-line with neuromuscular performance after 12 weeks of non-linear periodization strength training in the elderly. Aging Clin Exp Res 30:959–968. https://doi.org/10.1007/s40520-017-0873-x

    Article  PubMed  Google Scholar 

  52. da Silva ME, da Orssatto LBR, de Bezerra ES et al (2017) Reducing measurement errors during functional capacity tests in elders. Aging Clin Exp Res 30:595–603. https://doi.org/10.1007/s40520-017-0820-x

    Article  PubMed  Google Scholar 

  53. Ramirez-campillo R, Cristi-montero C, Ramirez-campillo R, Diaz D (2016) Effects of different doses of high-speed resistance training on physical performance and quality of life in older women: a randomized controlled trial. Clin Interv Aging 11:1–8

    Article  Google Scholar 

  54. Ramirez-Campillo R, Castillo A, de la Fuente CI et al (2014) High-speed resistance training is more effective than low-speed resistance training to increase functional capacity and muscle performance in older women. Exp Gerontol 58:51–57. https://doi.org/10.1016/j.exger.2014.07.001

    Article  PubMed  Google Scholar 

  55. Barbalho MDSM, Gentil P, Fisher J et al (2017) There are no no-responders to low or high resistance training volumes among older women. Exp Gerontol 1:18–26. https://doi.org/10.1016/j.exger.2017.09.003

    Article  Google Scholar 

  56. Ramírez-Campillo R, Castillo A, de la Fuente CI et al (2014) High-speed resistance training is more effective than low-speed resistance training to increase functional capacity and muscle performance in older women. Exp Gerontol 58:51–57. https://doi.org/10.1016/j.exger.2014.07.001

    Article  PubMed  Google Scholar 

  57. Correa C, LaRoche D, Cadore E et al (2012) 3 different types of strength training in older women. Int J Sports Med. https://doi.org/10.1055/s-0032-1312648

    Article  PubMed  Google Scholar 

  58. Steib S, Schoene D, Pfeifer K (2010) Dose–response relationship of resistance training in older adults. Med Sci Sport Exerc 42:902–914. https://doi.org/10.1249/MSS.0b013e3181c34465

    Article  Google Scholar 

  59. Murlasits Z, Reed J, Wells K (2012) Effect of resistance training frequency on physiological adaptations in older adults. J Exerc Sci Fit 10:28–32. https://doi.org/10.1016/j.jesf.2012.04.006

    Article  Google Scholar 

  60. Orssatto LBR, Moura BM, Bezerra ES et al (2018) Influence of strength training intensity on subsequent recovery in elderly. Exp Gerontol 106:232–239. https://doi.org/10.1016/j.exger.2018.03.011

    Article  CAS  PubMed  Google Scholar 

  61. Conlon JA, Newton RU, Tufano JJ et al (2017) The efficacy of periodised resistance training on neuromuscular adaptation in older adults. Eur J Appl Physiol. https://doi.org/10.1007/s00421-017-3605-1

    Article  PubMed  Google Scholar 

  62. Ciaccioni S, Capranica L, Forte R et al (2019) Effects of a judo training on functional fitness, anthropometric, and psychological variables in old novice practitioners. J Aging Phys Act 27:831–842. https://doi.org/10.1123/japa.2018-0341

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewertton de S. Bezerra.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

All procedures were approved by the University Ethics Committee (N.1.657.414) and followed the Declaration of Helsinki (version 2008).

Informed consent

Before the beginning of the study, participants were informed of the purpose, procedures, benefits, and risks of participation and signed the written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezerra, E.d., Orssatto, L.B.R., Oliveira, S.N. et al. One-year cessation following resistance training differently affects neuromuscular, body composition, and functional capacity in older adults. Sport Sci Health 17, 347–355 (2021). https://doi.org/10.1007/s11332-020-00695-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-020-00695-7

Keywords

Navigation