Skip to main content
Log in

IGF-1: a potential biomarker for efficacy of sleep improvement with automatic airway pressure therapy for obstructive sleep apnea?

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Background

Positive airway pressure (PAP) reverses obstructive sleep apnea (OSA)-related hypoxia and restores slow wave sleep (SWS). Insulin-like growth factor 1 (IGF-1) is a neuropeptide that facilitates the repair of neurons from hypoxia and improves sleep regulation. IGF-1 concentrations are lower in OSA, and likely increase following PAP treatment; however, this relationship has not yet been determined in a younger cohort of OSA patients.

Methods

This was a prospective, observational pilot study of 58 young men, who were diagnosed with OSA and provided PAP as an intervention. Adherence to PAP treatment over 3 months was objectively measured, as well as changes in the apnea–hypopnea index (AHI). Serum concentrations of IGF-1and C-reactive protein (CRP) were measured and correlated with PAP adherence.

Results

IGF-1 concentrations at baseline were similar between PAP adherent 55.5 ± 34.4 ng/ml and PAP nonadherent participants 61.2 ± 27.1 ng/ml (p = 0.4), with the overall mean IGF-1 concentration of 59.0 ± 29.9 ng/ml. At follow-up, adherent participants had concentrations of IGF-1 that were significantly higher 128 ± 59.5 ng/ml compared to nonadherent participants 86.0 ± 47.4 ng/ml (p < 0.01). Increases in IGF-1 concentrations were significantly associated with reductions in AHI (Spearman’s rho = −0.409, p = 0.015). Conversely, CRP concentrations did not differ between baseline and follow-up measurements in either group.

Conclusions

Adherence to PAP treatment leads to significant increases in IGF-1 concentrations in young men with OSA. While an objective measure of adherence exists, PAP usage does not allow for measure of sleep improvement. IGF-1 may serve as a potential biomarker for the efficacy of PAP therapy on improved sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Meston N, Davies RJ, Mullins R, Jenkinson C, Wass JA, Stradling JR (2003) Endocrine effects of nasal continuous positive airway pressure in male patients with obstructive sleep apnoea. J Intern Med 254(5):447–454

    Article  CAS  PubMed  Google Scholar 

  2. Cooper BG, White JE, Ashworth LA, Alberti KG, Gibson GJ (1995) Hormonal and metabolic profiles in subjects with obstructive sleep apnea syndrome and the acute effects of nasal continuous positive airway pressure (CPAP) treatment. Sleep 18(3):172–179

    CAS  PubMed  Google Scholar 

  3. Mansukhani MP, Calvin AD, Kolla BP, Brown RD Jr, Lipford MC, Somers VK, Caples SM (2013) The association between atrial fibrillation and stroke in patients with obstructive sleep apnea: a population-based case–control study. Sleep Med 14(3):243–246

    Article  PubMed Central  PubMed  Google Scholar 

  4. Jones A, Vennelle M, Connell M, McKillop G, Newby DE, Douglas NJ, Riha RL (2013) Arterial stiffness and endothelial function in obstructive sleep apnoea/hypopnoea syndrome. Sleep Med 14(5):428–432

    Article  PubMed  Google Scholar 

  5. Gami AS, Olson EJ, Shen WK, Wright RS, Ballman KV, Hodge DO, Herges RM, Howard DE, Somers VK (2013) Obstructive sleep apnea and the risk of sudden cardiac death: a longitudinal study of 10,701 adults. J Am Coll Cardiol 62(7):610–616

    Article  PubMed  Google Scholar 

  6. Muraja-Murro A, Eskola K, Kolari T, Tiihonen P, Hukkanen T, Tuomilehto H, Peltonen M, Mervaala E, Toyras J (2013) Mortality in middle-aged men with obstructive sleep apnea in Finland. Sleep Breath Schlaf Atmung 17(3):1047–1053

    Article  CAS  PubMed  Google Scholar 

  7. Sharma SK, Agrawal S, Damodaran D, Sreenivas V, Kadhiravan T, Lakshmy R, Jagia P, Kumar A (2011) CPAP for the metabolic syndrome in patients with obstructive sleep apnea. N Engl J Med 365(24):2277–2286

    Article  CAS  PubMed  Google Scholar 

  8. Lam B, Sam K, Mok WY, Cheung MT, Fong DY, Lam JC, Lam DC, Yam LY, Ip MS (2007) Randomised study of three non-surgical treatments in mild to moderate obstructive sleep apnoea. Thorax 62(4):354–359

    Article  PubMed Central  PubMed  Google Scholar 

  9. Campos-Rodriguez F, Pena-Grinan N, Reyes-Nunez N, De la Cruz-Moron I, Perez-Ronchel J, De la Vega-Gallardo F, Fernandez-Palacin A (2005) Mortality in obstructive sleep apnea–hypopnea patients treated with positive airway pressure. Chest 128(2):624–633

    Article  PubMed  Google Scholar 

  10. Campos-Rodriguez F, Martinez-Garcia MA, de la Cruz-Moron I, Almeida-Gonzalez C, Catalan-Serra P, Montserrat JM (2012) Cardiovascular mortality in women with obstructive sleep apnea with or without continuous positive airway pressure treatment: a cohort study. Ann Intern Med 156(2):115–122

    Article  PubMed  Google Scholar 

  11. Chirinos JA, Gurubhagavatula I, Teff K, Rader DJ, Wadden TA, Townsend R, Foster GD, Maislin G, Saif H, Broderick P, Chittams J, Hanlon AL, Pack AI (2014) CPAP, weight loss, or both for obstructive sleep apnea. N Engl J Med 370(24):2265–2275

    Article  PubMed Central  PubMed  Google Scholar 

  12. Shah N, Rice T, Tracy D, Rohan T, Buzkova P, Newman A, Kaplan RC (2013) Sleep and insulin-like growth factors in the cardiovascular health study. J Clin Sleep Med: JCSM: Off Publ Am Acad Sleep Med 9(12):1245–1251

    Google Scholar 

  13. Schussler P, Yassouridis A, Uhr M, Kluge M, Weikel J, Holsboer F, Steiger A (2006) Growth hormone-releasing hormone and corticotropin-releasing hormone enhance non-rapid-eye-movement sleep after sleep deprivation. Am J Physiol Endocrinol Metab 291(3):E549–E556

    Article  CAS  PubMed  Google Scholar 

  14. Gozal D, Sans Capdevila O, McLaughlin Crabtree V, Serpero LD, Witcher LA, Kheirandish-Gozal L (2009) Plasma IGF-1 levels and cognitive dysfunction in children with obstructive sleep apnea. Sleep Med 10(2):167–173

    Article  PubMed  Google Scholar 

  15. Dusak A, Ursavas A, Hakyemez B, Gokalp G, Taskapilioglu O, Parlak M (2013) Correlation between hippocampal volume and excessive daytime sleepiness in obstructive sleep apnea syndrome. Eur Rev Med Pharmacol Sci 17(9):1198–1204

    CAS  PubMed  Google Scholar 

  16. Fung SJ, Xi M, Zhang J, Sampogna S, Chase MH (2012) Apnea produces excitotoxic hippocampal synapses and neuronal apoptosis. Exp Neurol 238(2):107–113

    Article  PubMed  Google Scholar 

  17. Nair D, Ramesh V, Li RC, Schally AV, Gozal D (2013) Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse. J Neurochem 127(4):531–540

    Article  CAS  PubMed  Google Scholar 

  18. Berryman DE, Glad CA, List EO, Johannsson G (2013) The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations. Nat Rev Endocrinol 9(6):346–356

    Article  CAS  PubMed  Google Scholar 

  19. Li AM, Au CT, Ng C, Lam HS, Ho CK, Wing YK (2014) A 4-year prospective follow-up study of childhood OSA and its association with BP. Chest 145(6):1255–1263

    Article  PubMed  Google Scholar 

  20. Barcelo A, Barbe F, de la Pena M, Martinez P, Soriano JB, Pierola J, Agusti AG (2008) Insulin resistance and daytime sleepiness in patients with sleep apnoea. Thorax 63(11):946–950

    Article  CAS  PubMed  Google Scholar 

  21. McArdle N, Hillman D, Beilin L, Watts G (2007) Metabolic risk factors for vascular disease in obstructive sleep apnea: a matched controlled study. Am J Respir Crit Care Med 175(2):190–195

    Article  CAS  PubMed  Google Scholar 

  22. Makino S, Fujiwara M, Handa H, Fujie T, Aoki Y, Hashimoto K, Terada Y, Sugimoto T (2012) Plasma dehydroepiandrosterone sulphate and insulin-like growth factor I levels in obstructive sleep apnoea syndrome. Clin Endocrinol 76(4):593–601

    Article  CAS  Google Scholar 

  23. Lindberg E, Berne C, Elmasry A, Hedner J, Janson C (2006) CPAP treatment of a population-based sample—what are the benefits and the treatment compliance? Sleep Med 7(7):553–560

    Article  PubMed  Google Scholar 

  24. Wong SC, Smyth A, McNeill E, Galloway PJ, Hassan K, McGrogan P, Ahmed SF (2010) The growth hormone insulin-like growth factor 1 axis in children and adolescents with inflammatory bowel disease and growth retardation. Clin Endocrinol 73(2):220–228

    CAS  Google Scholar 

  25. Kim JH, Kwon MS, Song HM, Lee BJ, Jang YJ, Chung YS (2009) Compliance with positive airway pressure treatment for obstructive sleep apnea. Clin Exp Otorhinolaryngol 2(2):90–96

    Article  PubMed Central  PubMed  Google Scholar 

  26. Mysliwiec V, Gill J, Lee H, Baxter T, Pierce R, Barr TL, Krakow B, Roth BJ (2013) Sleep disorders in US military personnel: a high rate of comorbid insomnia and obstructive sleep apnea. Chest 144(2):549–557

    Article  PubMed  Google Scholar 

  27. Iber C, Ancoli Israel S, Chesson AL J, Quan S (2007) The AASM manual for the scoring of sleep and associated events. American Academy of Sleep Medicine, Westchester

    Google Scholar 

  28. American Academy of Sleep Medicine (2005) International classification of sleep disorders: diagnostic and coding manual, 2nd edn. American Academy of Sleep Medicine, Westchester

    Google Scholar 

  29. Hoyos CM, Killick R, Keenan DM, Baxter RC, Veldhuis JD, Liu PY (2014) Continuous positive airway pressure increases pulsatile growth hormone secretion and circulating insulin-like growth factor-1 in a time-dependent manner in men with obstructive sleep apnea: a randomized sham-controlled study. Sleep 37(4):733–741

    PubMed Central  PubMed  Google Scholar 

  30. Meulenbelt I, Bijkerk C, Miedema H, Breedveld F, Hofman A, Valkenburg H, Pols H, Slagboom P, Van Duijn C (1998) A genetic association study of the IGF-1 gene and radiological osteoarthritis in a population-based cohort study (the Rotterdam Study). Ann Rheum Dis 57(6):371–374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Cassilhas RC, Antunes HKM, Tufik S, De Mello MT (2010) Mood, anxiety, and serum IGF-1 in elderly men given 24 weeks of high resistance exercise 1, 2. Percept Mot Skills 110(1):265–276

    Article  PubMed  Google Scholar 

  32. Nindl BC, Alemany JA, Kellogg MD, Rood J, Allison SA, Young AJ, Montain SJ (2007) Utility of circulating IGF-I as a biomarker for assessing body composition changes in men during periods of high physical activity superimposed upon energy and sleep restriction. J Appl Physiol 103(1):340–346

    Article  CAS  PubMed  Google Scholar 

  33. Caregaro L, Favaro A, Santonastaso P, Alberino F, Di Pascoli L, Nardi M, Favaro S, Gatta A (2001) Insulin-like growth factor 1 (IGF-1), a nutritional marker in patients with eating disorders. Clin Nutr 20(3):251–257

    Article  CAS  PubMed  Google Scholar 

  34. Kaklamani VG, Linos A, Kaklamani E, Markaki I, Mantzoros C (1999) Age, sex, and smoking are predictors of circulating insulin-like growth factor 1 and insulin-like growth factor-binding protein 3. J Clin Oncol 17(3):813–813

    CAS  PubMed  Google Scholar 

  35. Rojdmark S, Rydvald Y, Aquilonius A, Brismar K (2000) Insulin-like growth factor (IGF)-1 and IGF-binding protein-1 concentrations in serum of normal subjects after alcohol ingestion: evidence for decreased IGF-1 bioavailability. Clin Endocrinol-Oxford 52(3):313–318

    Article  CAS  Google Scholar 

  36. Luxton DD, Greenburg D, Ryan J, Niven A, Wheeler G, Mysliwiec V (2011) Prevalence and impact of short sleep duration in redeployed OIF soldiers. Sleep 34(9):1189–1195

    PubMed Central  PubMed  Google Scholar 

  37. Schiza SE, Mermigkis C, Panagiotis P, Bouloukaki I, Kallergis E, Tzanakis N, Tzortzaki E, Vlachaki E, Siafakas NM (2010) C-reactive protein evolution in obstructive sleep apnoea patients under CPAP therapy. Eur J Clin Investig 40(11):968–975

    Article  CAS  Google Scholar 

  38. Granada ML, Murillo J, Lucas A, Salinas I, Llopis MA, Castells I, Foz M, Sanmarti A (2000) Diagnostic efficiency of serum IGF-I, IGF-binding protein-3 (IGFBP-3), IGF-I/IGFBP-3 molar ratio and urinary GH measurements in the diagnosis of adult GH deficiency: importance of an appropriate reference population. Eur J Endocrinol Eur Fed Endocrine Soc 142(3):243–253

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The opinions and assertions in this manuscript are those of the authors and do not necessarily represent those of the Department of the Army, Department of Defense, US Government, or the Center for Neuroscience and Regenerative Medicine.

Conflict of interest

No author has any conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard J. Roth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mysliwiec, V., Gill, J., Matsangas, P. et al. IGF-1: a potential biomarker for efficacy of sleep improvement with automatic airway pressure therapy for obstructive sleep apnea?. Sleep Breath 19, 1221–1228 (2015). https://doi.org/10.1007/s11325-015-1142-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-015-1142-x

Keywords

Navigation