Skip to main content
Log in

The Utility of [18F]DASA-23 for Molecular Imaging of Prostate Cancer with Positron Emission Tomography

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

There is a strong, unmet need for superior positron emission tomography (PET) imaging agents that are able to measure biochemical processes specific to prostate cancer. Pyruvate kinase M2 (PKM2) catalyzes the concluding step in glycolysis and is a key regulator of tumor growth and metabolism. Elevation of PKM2 expression was detected in Gleason 8–10 tumors compared to Gleason 6–7 carcinomas, indicating that PKM2 may potentially be a marker of aggressive prostate cancer. We have recently reported the development of a PKM2-specific radiopharmaceutical [18F]DASA-23 and herein describe its evaluation in cell culture and preclinical models of prostate cancer.

Procedure

The cellular uptake of [18F]DASA-23 was evaluated in a panel of prostate cancer cell lines and compared to that of [18F]FDG. The specificity of [18F]DASA-23 to measure PKM2 levels in cell culture was additionally confirmed through the use of PKM2-specific siRNA. PET imaging studies were then completed utilizing subcutaneous prostate cancer xenografts using either PC3 or DU145 cells in mice.

Results

[18F]DASA-23 uptake values over 60-min incubation period in PC3, LnCAP, and DU145 respectively were 23.4 ± 4.5, 18.0 ± 2.1, and 53.1 ± 4.6 % tracer/mg protein. Transient reduction in PKM2 protein expression with siRNA resulted in a 50.1 % reduction in radiotracer uptake in DU145 cells. Small animal PET imaging revealed 0.86 ± 0.13 and 1.6 ± 0.2 % ID/g at 30 min post injection of radioactivity in DU145 and PC3 subcutaneous tumor bearing mice respectively.

Conclusion

Herein, we evaluated a F-18-labeled PKM2-specific radiotracer, [18F]DASA-23, for the molecular imaging of prostate cancer with PET. [18F]DASA-23 revealed rapid and extensive uptake levels in cellular uptake studies of prostate cancer cells; however, there was only modest tumor uptake when evaluated in mouse subcutaneous tumor models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kelloff GJ, Hoffman JM, Johnson B, Scher HI, Siegel BA, Cheng EY, Cheson BD, O'shaughnessy J, Guyton KZ, Mankoff DA, Shankar L, Larson SM, Sigman CC, Schilsky RL, Sullivan DC (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11:2785–2808

    Article  CAS  Google Scholar 

  2. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  Google Scholar 

  3. Brawley OW (2012) Prostate cancer epidemiology in the United States. World J Urol 30:195–200

    Article  Google Scholar 

  4. Kavanagh JP (1994) Isocitric and citric acid in human prostatic and seminal fluid: implications for prostatic metabolism and secretion. Prostate 24:139–142

    Article  CAS  Google Scholar 

  5. Medrano A, Fernandez-Novell JM, Ramio L et al (2006) Utilization of citrate and lactate through a lactate dehydrogenase and ATP-regulated pathway in boar spermatozoa. Mol Reprod Dev 73:369–378

    Article  CAS  Google Scholar 

  6. Mycielska ME, Patel A, Rizaner N, Mazurek MP, Keun H, Patel A, Ganapathy V, Djamgoz MBA (2009) Citrate transport and metabolism in mammalian cells: prostate epithelial cells and prostate cancer. BioEssays 31:10–20

    Article  CAS  Google Scholar 

  7. Wong N, Yan J, Ojo D, de Melo J, Cutz JC, Tang D (2014) Changes in PKM2 associate with prostate cancer progression. Cancer Investig 32:330–338

    Article  CAS  Google Scholar 

  8. Jadvar H (2013) Molecular imaging of prostate cancer with PET. J Nucl Med 54:1685–1688

    Article  CAS  Google Scholar 

  9. Jadvar H (2009) FDG PET in prostate Cancer. PET Clinics 4:155–161

    Article  Google Scholar 

  10. Jadvar H, Xiankui L, Shahinian A, Park R, Tohme M, Pinski J, Conti PS (2005) Glucose metabolism of human prostate cancer mouse xenografts. Mol Imaging 4:91–97

    Article  Google Scholar 

  11. Liu IJ, Zafar MB, Lai Y-H, Segall GM, Terris MK (2001) Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 57:108–111

    Article  CAS  Google Scholar 

  12. Ross JS, Sheehan CE, Fisher HA, Kaufman RP Jr, Kaur P, Gray K, Webb I, Gray GS, Mosher R, Kallakury BV (2003) Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin Cancer Res 9:6357–6362

    CAS  PubMed  Google Scholar 

  13. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3:81–85

    CAS  PubMed  Google Scholar 

  14. Troyer JK, Beckett ML, Wright GL Jr (1995) Detection and characterization of the prostate-specific membrane antigen (PSMA) in tissue extracts and body fluids. Int J Cancer 62:552–558

    Article  CAS  Google Scholar 

  15. Iagaru A (2017) Will GRPR compete with PSMA as a target in prostate cancer? J Nucl Med 58:1883–1884

    Article  CAS  Google Scholar 

  16. Iagaru A, Minamimoto R, Loening A et al (2016) Biochemically recurrent prostate cancer: 68Ga-RM2 (formerly known as 68Ga-Bombesin or BAY86-7548) PET/MRI is superior to conventional imaging. J Nucl Med 57:466

    Article  Google Scholar 

  17. Nagasaki S, Nakamura Y, Maekawa T et al (2012) Immunohistochemical analysis of gastrin-releasing peptide receptor (GRPR) and possible regulation by estrogen receptor betacx in human prostate carcinoma. Neoplasma 59:224–232

    Article  CAS  Google Scholar 

  18. Beer M, Montani M, Gerhardt J, Wild PJ, Hany TF, Hermanns T, Müntener M, Kristiansen G (2012) Profiling gastrin-releasing peptide receptor in prostate tissues: clinical implications and molecular correlates. Prostate 72:318–325

    Article  CAS  Google Scholar 

  19. Wong N, De Melo J, Tang D (2013) PKM2, a central point of regulation in Cancer metabolism. Int J Cell Biol 2013:242513

    Article  Google Scholar 

  20. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233

    Article  CAS  Google Scholar 

  21. Brinck U, Eigenbrodt E, Oehmke M, Mazurek S, Fischer G (1994) L- and M2-pyruvate kinase expression in renal cell carcinomas and their metastases. Virchows Arch 424:177–185

    Article  CAS  Google Scholar 

  22. Bluemlein K, Grüning N-M, Feichtinger RG, Lehrach H, Kofler B, Ralser M (2011) No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis. Oncotarget 2:393–400

    Article  Google Scholar 

  23. Beinat C, Alam IS, James ML, Srinivasan A, Gambhir SS (2017) Development of [18F]DASA-23 for imaging tumor glycolysis through noninvasive measurement of pyruvate kinase M2. Mol Imaging Biol 19:665–672

    Article  CAS  Google Scholar 

  24. Salminen E, Hogg A, Binns D, Frydenberg M, Hicks R (2002) Investigations with FDG-PET scanning in prostate cancer show limited value for clinical practice. Acta Oncol 41:425–429

    Article  Google Scholar 

  25. Sonni I, Baratto L, Iagaru A (2017) Imaging of prostate cancer using Gallium-68 labeled Bombesin. PET Clinics 12:159–171

    Article  Google Scholar 

  26. Artigas C, Alexiou J, Garcia C, Wimana Z, Otte FX, Gil T, van Velthoven R, Flamen P (2016) Paget bone disease demonstrated on (68)Ga-PSMA ligand PET/CT. Eur J Nucl Med Mol Imaging 43:195–196

    Article  CAS  Google Scholar 

  27. Kanthan GL, Drummond J, Schembri GP, Izard MA, Hsiao E (2016) Follicular thyroid adenoma showing avid uptake on 68Ga PSMA-HBED-CC PET/CT. Clin Nucl Med 41:331–332

    Article  Google Scholar 

  28. Kobe C, Maintz D, Fischer T, Drzezga A, Chang DH (2015) Prostate-specific membrane antigen PET/CT in splenic sarcoidosis. Clin Nucl Med 40:897–898

    Article  Google Scholar 

  29. Rischpler C, Maurer T, Schwaiger M, Eiber M (2016) Intense PSMA-expression using 68Ga-PSMA PET/CT in a paravertebral schwannoma mimicking prostate cancer metastasis. Eur J Nucl Med Mol Imaging 43:193–194

    Article  Google Scholar 

  30. Krohn T, Verburg FA, Pufe T, Neuhuber W, Vogg A, Heinzel A, Mottaghy FM, Behrendt FF (2015) [(68)Ga]PSMA-HBED uptake mimicking lymph node metastasis in coeliac ganglia: an important pitfall in clinical practice. Eur J Nucl Med Mol Imaging 42:210–214

    Article  Google Scholar 

  31. Roivainen A, Kähkönen E, Luoto P et al (2013) Plasma pharmacokinetics, whole-body distribution, metabolism, and radiation Dosimetry of 68Ga Bombesin antagonist BAY 86-7548 in healthy men. J Nucl Med 54:867–872

    Article  CAS  Google Scholar 

  32. Stephens A, Loidl WC, Beheshti M, Jambor I, Kemppainen J, Bostrom P, Kahkonen E, Berndt M, Mueller A, Minn H, Langsteger W (2016) Detection of prostate cancer with the [68Ga]-labeled bombesin antagonist RM2 in patients undergoing radical prostatectomy. J Clin Oncol 34:80

    Article  Google Scholar 

  33. Chlenski A, K-i N, Ketels KV et al (2001) Androgen receptor expression in androgen-independent prostate cancer cell lines. Prostate 47:66–75

    Article  CAS  Google Scholar 

  34. Andersen KF, Divilov V, Sevak K, Koziorowski J, Lewis JS, Pillarsetty NVK (2014) Influence of free fatty acids on glucose uptake in prostate cancer cells. Nucl Med Biol 41:254–258

    Article  CAS  Google Scholar 

  35. Witney TH, James ML, Shen B, Chang E, Pohling C, Arksey N, Hoehne A, Shuhendler A, Park JH, Bodapati D, Weber J, Gowrishankar G, Rao J, Chin FT, Gambhir SS (2015) PET imaging of tumor glycolysis downstream of hexokinase through noninvasive measurement of pyruvate kinase M2. Sci Transl Med 7(310):310ra169

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Radiochemistry Facility at Stanford University for the 18F-18 production in particular Drs. Bin Shen and Jun Hyung Park. We would also like to thank the Small Animal Imaging Facility at Stanford, particularly Dr. Timothy Doyle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiv Sam Gambhir.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beinat, C., Haywood, T., Chen, YS. et al. The Utility of [18F]DASA-23 for Molecular Imaging of Prostate Cancer with Positron Emission Tomography. Mol Imaging Biol 20, 1015–1024 (2018). https://doi.org/10.1007/s11307-018-1194-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-018-1194-y

Key words

Navigation