Skip to main content

Advertisement

Log in

Multimodality Imaging of Cancer Superoxide Anion Using the Small Molecule Coelenterazine

  • Brief Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

We evaluated the small molecule coelenterazine as a potential reporter of cancer-associated superoxide anion in cell culture and in mice.

Procedures

The superoxide anion concentrations of various cancer cell lines were quantified by coelenterazine chemiluminescence in vitro. Coelenteramide fluorescence was detected via flow cytometry and fluorescent microscopy. Coelenterazine was used for the in vivo detection of cancer-associated superoxide anion using the 4T1 breast adenocarcinoma mouse model.

Results

Various cell lines in culture demonstrated different superoxide anion concentrations, with a signal range of 3.15 ± 0.06 to 11.80 ± 0.24 times that of background. In addition to chemiluminescent detection of coelenterazine, we demonstrated fluorescent detection of coelenteramide within the cytoplasm of cells. 4T1 murine mammary adenocarcinoma tumors in mice demonstrated significantly higher 2.13 ± 0.19-fold coelenterazine-based chemiluminescence than that of surrounding normal tissues.

Conclusions

Collectively, our results indicate that coelenterazine can be used to assay superoxide anion concentrations in cultured cancer cells and in tumors growing in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798

    CAS  PubMed  Google Scholar 

  2. Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liou G-Y, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44:479–496

    Article  CAS  PubMed  Google Scholar 

  4. Bartsch H, Nair J (2004) Oxidative stress and lipid peroxidation-derived DNA-lesions in inflammation driven carcinogenesis. Cancer Detect Prev 28:385–391

    Article  CAS  PubMed  Google Scholar 

  5. Bartsch H, Nair J (2002) Potential role of lipid peroxidation derived DNA damage in human colon carcinogenesis: studies on exocyclic base adducts as stable oxidative stress markers. Cancer Detect Prev 26:308–312

    Article  CAS  PubMed  Google Scholar 

  6. Maynard S, Schurman SH, Harboe C et al (2009) Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30:2–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313(Pt 1):17–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burhans WC, Heintz NH (2009) The cell cycle is a redox cycle: linking phase-specific targets to cell fate. Free Radic Biol Med 47:1282–1293

    Article  CAS  PubMed  Google Scholar 

  9. Dickinson BC, Chang CJ (2011) Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol 7:504–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hensley K, Robinson KA, Gabbita SP et al (2000) Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med 28:1456–1462

    Article  CAS  PubMed  Google Scholar 

  11. Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arnold RS, Shi J, Murad E et al (2001) Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc Natl Acad Sci U S A 98:5550–5555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Irani K, Xia Y, Zweier JL et al (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275:1649–1652

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Martindale JL, Liu Y, Holbrook NJ (1998) The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J 333(Pt 2):291–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burdon RH (1995) Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med 18:775–794

    Article  CAS  PubMed  Google Scholar 

  16. Cai H, Dikalov S, Griendling KK, Harrison DG (2007) Detection of reactive oxygen species and nitric oxide in vascular cells and tissues: comparison of sensitivity and specificity. Methods Mol Med 139:293–311

    Article  CAS  PubMed  Google Scholar 

  17. Zhao H, Kalivendi S, Zhang H et al (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med 34:1359–1368

    Article  CAS  PubMed  Google Scholar 

  18. Nazarewicz RR, Bikineyeva A, Dikalov SI (2013) Rapid and specific measurements of superoxide using fluorescence spectroscopy. J Biomol Screen 18:498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Teranishi K, Shimomura O (1997) Coelenterazine analogs as chemiluminescent probe for superoxide anion. Anal Biochem 249:37–43

    Article  CAS  PubMed  Google Scholar 

  20. Tarpey MM, White CR, Suarez E et al (1999) Chemiluminescent detection of oxidants in vascular tissue. Lucigenin but not coelenterazine enhances superoxide formation. Circ Res 84:1203–1211

    Article  CAS  PubMed  Google Scholar 

  21. Lucas M, Solano F (1992) Coelenterazine is a superoxide anion-sensitive chemiluminescent probe: its usefulness in the assay of respiratory burst in neutrophils. Anal Biochem 206:273–277

    Article  CAS  PubMed  Google Scholar 

  22. Wu C, Nakamura H, Murai A, Shimomura O (2001) Chemi- and bioluminescence of coelenterazine analogues with a conjugated group at the C-8 position. Tetrahedron Lett 42:2997–3000

    Article  CAS  Google Scholar 

  23. Chen SF, Navizet I, Roca-Sanjuán D et al (2012) Chemiluminescence of coelenterazine and fluorescence of coelenteramide: a systematic theoretical study. J Chem Theory Comput 8:2796–2807

    Article  CAS  PubMed  Google Scholar 

  24. Fernandes DC, Wosniak J, Pescatore LA et al (2007) Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems. Am J Physiol Cell Physiol 292:C413–C422

    Article  CAS  PubMed  Google Scholar 

  25. Zhao H, Doyle TC, Wong RJ et al (2004) Characterization of coelenterazine analogs for measurements of Renilla luciferase activity in live cells and living animals. Mol Imaging 3:43–54

    Article  CAS  PubMed  Google Scholar 

  26. Mukhopadhyay P, Rajesh M, Yoshihiro K et al (2007) Simple quantitative detection of mitochondrial superoxide production in live cells. Biochem Biophys Res Commun 358:203–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Caldefie-Chézet F, Walrand S, Moinard C et al (2002) Is the neutrophil reactive oxygen species production measured by luminol and lucigenin chemiluminescence intra or extracellular? Comparison with DCFH-DA flow cytometry and cytochrome c reduction. Clin Chim Acta 319:9–17

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was generously supported, in part, by an unrestricted gift from the Chamber’s Family Foundation (to C.H.C.) and by a grant from the National Institutes of Health (1R24DK096465-01).

Conflict of Interest

The authors declare that they have no competing interests.

Ethics Statement

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher H. Contag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bronsart, L.L., Stokes, C. & Contag, C.H. Multimodality Imaging of Cancer Superoxide Anion Using the Small Molecule Coelenterazine. Mol Imaging Biol 18, 166–171 (2016). https://doi.org/10.1007/s11307-015-0896-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0896-7

Key words

Navigation