Skip to main content

Advertisement

Log in

In Vitro and In Vivo Characterization of Two C-11-Labeled PET Tracers for Vesicular Acetylcholine Transporter

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The vesicular acetylcholine transporter (VAChT) is a specific biomarker for imaging presynaptic cholinergic neurons. Herein, two potent and selective 11C-labeled VAChT inhibitors were evaluated in rodents and nonhuman primates for imaging VAChT in vivo.

Procedures

For both (−)-[11C]2 and (−)-[11C]6, biodistribution, autoradiography, and metabolism studies were performed in male Sprague Dawley rats. Positron emission tomography (PET) brain studies with (−)-[11C]2 were performed in adult male cynomolgus macaques; 2 h dynamic data was acquired, and the regions of interest were drawn by co-registration of the PET images with the MRI.

Results

The resolved enantiomers (−)-2 and (−)-6 were very potent and selective for VAChT in vitro (K i  < 5 nM for VAChT with >35-fold selectivity for VAChT vs. σ receptors); both radioligands, (−)-[11C]2 and (−)-[11C]6, demonstrated high accumulation in the VAChT-enriched striatum of rats. (−)-[11C]2 had a higher striatum to cerebellum ratio of 2.4-fold at 60 min; at 30 min, striatal uptake reached 0.550 ± 0.086 %ID/g. Uptake was also specific and selective; following pretreatment with (±)-2, striatal uptake of (−)-[11C]2 in rats at 30 min decreased by 50 %, while pretreatment with a potent sigma ligand had no significant effect on striatal uptake in rats. In addition, (−)-[11C]2 displayed favorable in vivo stability in rat blood and brain. PET studies of (−)-[11C]2 in nonhuman primates indicate that it readily crosses the blood-brain barrier (BBB) and provides clear visualization of the striatum; striatal uptake reaches the maximum at 60 min, at which time the target to nontarget ratio reached ~2-fold.

Conclusions

The radioligand (−)-[11C]2 has high potential to be a suitable PET radioligand for imaging VAChT in the brain of living subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gilmor ML, Nash NR, Roghani A et al (1996) Expression of the putative vesicular acetylcholine transporter in rat brain and localization in cholinergic synaptic vesicles. J Neurosci: Off J Soc Neurosci 16:2179–2190

    CAS  Google Scholar 

  2. Erickson JD, Varoqui H, Schafer MK et al (1994) Functional identification of a vesicular acetylcholine transporter and its expression from a “cholinergic” gene locus. J Biol Chem 269:21929–21932

    CAS  PubMed  Google Scholar 

  3. Roghani A, Feldman J, Kohan SA et al (1994) Molecular cloning of a putative vesicular transporter for acetylcholine. Proc Natl Acad Sci USA 91:10620–10624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bahr BA, Parsons SM (1986) Acetylcholine transport and drug inhibition kinetics in Torpedo synaptic vesicles. J Neurochem 46:1214–1218

    Article  CAS  PubMed  Google Scholar 

  5. Rogers GA, Parsons SM, Anderson DC et al (1989) Synthesis, in vitro acetylcholine-storage-blocking activities, and biological properties of derivatives and analogues of trans-2-(4-phenylpiperidino)cyclohexanol (vesamicol). J Med Chem 32:1217–1230

    Article  CAS  PubMed  Google Scholar 

  6. Prado VF, Martins-Silva C, de Castro BM et al (2006) Mice deficient for the vesicular acetylcholine transporter are myasthenic and have deficits in object and social recognition. Neuron 51:601–612

    Article  CAS  PubMed  Google Scholar 

  7. Efange SM (2000) In vivo imaging of the vesicular acetylcholine transporter and the vesicular monoamine transporter. FASEB J: Off Publ Fed Am Soc Exp Biol 14:2401–2413

    Article  CAS  Google Scholar 

  8. Gilmor ML, Erickson JD, Varoqui H et al (1999) Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol 411:693–704

    Article  CAS  PubMed  Google Scholar 

  9. Giboureau N, Som IM, Boucher-Arnold A, Guilloteau D, Kassiou M (2010) PET radioligands for the vesicular acetylcholine transporter (VAChT). Curr Top Med Chem 10:1569–1583

    Article  CAS  PubMed  Google Scholar 

  10. Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305:137–138

    Article  CAS  PubMed  Google Scholar 

  11. Antonini A, Leenders KL, Eidelberg D (1998) [11C]raclopride-PET studies of the Huntington’s disease rate of progression: relevance of the trinucleotide repeat length. Ann Neurol 43:253–255

    Article  CAS  PubMed  Google Scholar 

  12. Banati RB, Newcombe J, Gunn RN et al (2000) The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain:J Neurol 123:2321–2337

    Article  Google Scholar 

  13. Choi SR, Golding G, Zhuang Z et al (2009) Preclinical properties of 18F-AV-45: a PET agent for Abeta plaques in the brain. J Nucl Med: Of Publ Soc Nucl Med 50:1887–1894

    Article  CAS  Google Scholar 

  14. Rowe CC, Ackerman U, Browne W et al (2008) Imaging of amyloid beta in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol 7:129–135

    Article  CAS  PubMed  Google Scholar 

  15. Padakanti PK, Zhang X, Li J, Parsons SM, Perlmutter JS, Tu Z (2014) Syntheses and radiosyntheses of two carbon-11 labeled potent and selective radioligands for imaging vesicular acetylcholine transporter. Mol Imaging Biol

  16. Zea-Ponce Y, Mavel S, Assaad T et al (2005) Synthesis and in vitro evaluation of new benzovesamicol analogues as potential imaging probes for the vesicular acetylcholine transporter. Bioorg Med Chem 13:745–753

    Article  CAS  PubMed  Google Scholar 

  17. Efange SM, Khare AB, von Hohenberg K, Mach RH, Parsons SM, Tu Z (2010) Synthesis and in vitro biological evaluation of carbonyl group-containing inhibitors of vesicular acetylcholine transporter. J Med Chem 53:2825–2835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wang W, Cui J, Lu X et al (2011) Synthesis and in vitro biological evaluation of carbonyl group-containing analogues for sigma-1 receptors. J Med Chem 54:5362–5372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Tu ZD, Wang W, Cui JQ et al (2012) Synthesis and evaluation of in vitro bioactivity for vesicular acetylcholine transporter inhibitors containing two carbonyl groups. Bioorg Med Chem 20:4422–4429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Li J, Zhang X, Zhang Z et al (2013) Heteroaromatic and aniline derivatives of piperidines as potent ligands for vesicular acetylcholine transporter. J Med Chem 56:6216–6233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Tu Z, Xu J, Jones LA et al (2007) Fluorine-18-labeled benzamide analogues for imaging the sigma 2 receptor status of solid tumors with positron emission tomography. J Med Chem 50:3194–3204

    Article  CAS  PubMed  Google Scholar 

  22. Xu J, Tu Z, Jones LA, Vangveravong S, Wheeler KT, Mach RH (2005) [3H]N-[4-(3,4-Dihydro-6,7-dimethoxyisoquinolin-2(1H)-yl)butyl]-2-methoxy-5-methylbenzamide: a novel sigma-2 receptor probe. Eur J Pharmacol 525:8–17

    Article  CAS  PubMed  Google Scholar 

  23. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50% inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  PubMed  Google Scholar 

  24. Aldridge WN (1953) The differentiation of true and pseudo cholinesterase by organophosphorus compounds. Biochem J 53:62–67

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Tu Z, Efange SM, Xu J et al (2009) Synthesis and in vitro and in vivo evaluation of 18F-labeled positron emission tomography (PET) ligands for imaging the vesicular acetylcholine transporter. J Med Chem 52:1358–1369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Woods RP, Mazziotta JC, Cherry SR (1993) MRI-PET registration with automated algorithm. J Comput Assist Tomogr 17:536–546

    Article  CAS  PubMed  Google Scholar 

  27. Mach RH, Huang Y, Buchheimer N et al (2001) [18F]N-(4’-Fluorobenzyl)-4-(3-bromophenyl) acetamide for imaging the sigma receptor status of tumors: comparison with [18F]FDG, and [125I]IUDR. Nucl Med Biol 28:451–458

    Article  CAS  PubMed  Google Scholar 

  28. NAIK NT (1963) Technical variations in Koelle’s histochemical method for demonstrating cholinesterase activity. Quart. J Microsc Sci

  29. Shiba K, Nishiyama S, Tsukada H et al (2009) The potential of (–)-o-[11C]methylvesamicol for diagnosing cholinergic deficit dementia. Synapse 63:167–171

    Article  CAS  PubMed  Google Scholar 

  30. Widen L, Eriksson L, Ingvar M, Parsons SM, Rogers GA, Stone-Elander S (1992) Positron emission tomographic studies of central cholinergic nerve terminals. Neurosci Lett 136:1–4

    Article  CAS  PubMed  Google Scholar 

  31. Mach RH, Voytko ML, Ehrenkaufer RL et al (1997) Imaging of cholinergic terminals using the radiotracer [18F](+)-4-fluorobenzyltrozamicol: in vitro binding studies and positron emission tomography studies in nonhuman primates. Synapse 25:368–380

    Article  CAS  PubMed  Google Scholar 

  32. Voytko ML, Mach RH, Gage HD, Ehrenkaufer RL, Efange SM, Tobin JR (2001) Cholinergic activity of aged rhesus monkeys revealed by positron emission tomography. Synapse 39:95–100

    Article  CAS  PubMed  Google Scholar 

  33. Gage HD, Gage JC, Tobin JR et al (2001) Morphine-induced spinal cholinergic activation: in vivo imaging with positron emission tomography. Pain 91:139–145

    Article  CAS  PubMed  Google Scholar 

  34. Gage HD, Voytko ML, Ehrenkaufer RL, Tobin JR, Efange SM, Mach RH (2000) Reproducibility of repeated measures of cholinergic terminal density using. J Nucl Med: Off Publ Soc Nucl Med 41:2069–2076

    CAS  Google Scholar 

  35. Efange SM, Nader MA, Ehrenkaufer RL et al (1999) (+)-p-([18F]Fluorobenzyl)spirotrozamicol [(+)-[18F]spiro-FBT]: synthesis and biological evaluation of a high-affinity ligand for the vesicular acetylcholine transporter (VAChT. Nucl Med Biol 26:189–192

    Article  CAS  PubMed  Google Scholar 

  36. Kilbourn MR, Hockley B, Lee L et al (2009) Positron emission tomography imaging of (2R,3R)-5-[18F]fluoroethoxybenzovesamicol in rat and monkey brain: a radioligand for the vesicular acetylcholine transporter. Nucl Med Biol 36:489–493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Giboureau N, Emond P, Fulton RR et al (2007) Ex vivo and in vivo evaluation of (2R,3R)-5-[18F]-fluoroethoxy- and fluoropropoxy-benzovesamicol, as PET radioligands for the vesicular acetylcholine transporter. Synapse 61:962–970

    Article  CAS  PubMed  Google Scholar 

  38. Petrou M, Frey KA, Kilbourn MR et al (2014) In vivo imaging of human cholinergic nerve terminals with (−)-5-18F-fluoroethoxybenzovesamicol: biodistribution, dosimetry, and tracer kinetic analyses. J Nucl Med: Off Publ Soc Nucl Med 55:396–404

    Article  CAS  Google Scholar 

  39. Nishiyama S, Ohba H, Kobashi T, et al. (2014) Development of novel PET probe [11C](R,R)HAPT and its stereoisomer [11C](S,S)HAPT for vesicular acetylcholine transporter imaging: a PET study in conscious monkey. Synapse

  40. Ingvar M, Stone-Elander S, Rogers GA et al (1993) Striatal D2/acetylcholine interactions: PET studies of the vesamicol receptor. Neuroreport 4:1311–1314

    Article  CAS  PubMed  Google Scholar 

  41. Custers FG, Leysen JE, Stoof JC, Herscheid JD (1997) Vesamicol and some of its derivatives: questionable ligands for selectively labelling acetylcholine transporters in rat brain. Eur J Pharmacol 338:177–183

    Article  CAS  PubMed  Google Scholar 

  42. Efange SM, Mach RH, Smith CR et al (1995) Vesamicol analogues as sigma ligands. Molecular determinants of selectivity at the vesamicol receptor. Biochem Pharmacol 49:791–797

    Article  CAS  PubMed  Google Scholar 

  43. Shiba K, Ogawa K, Ishiwata K, Yajima K, Mori H (2006) Synthesis and binding affinities of methylvesamicol analogs for the acetylcholine transporter and sigma receptor. Bioorg Med Chem 14:2620–2626

    Article  CAS  PubMed  Google Scholar 

  44. Hicks BW, Rogers GA, Parsons SM (1991) Purification and characterization of a nonvesicular vesamicol-binding protein from electric organ and demonstration of a related protein in mammalian brain. J Neurochem 57:509–519

    Article  CAS  PubMed  Google Scholar 

  45. Kawamura K, Shiba K, Tsukada H, Nishiyama S, Mori H, Ishiwata K (2006) Synthesis and evaluation of vesamicol analog (−)-O-[11C]methylvesamicol as a PET ligand for vesicular acetylcholine transporter. Ann Nucl Med 20:417–424

    Article  CAS  PubMed  Google Scholar 

  46. Mulholland GK, Wieland DM, Kilbourn MR et al (1998) [18F]Fluoroethoxy-benzovesamicol, a PET radiotracer for the vesicular acetylcholine transporter and cholinergic synapses. Synapse 30:263–274

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants NS061025, NS075527, and MH092797. The authors thank John Hood, Christina Zukas, and Darryl Craig for their assistance with the nonhuman primate microPET studies.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhude Tu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padakanti, P.K., Zhang, X., Jin, H. et al. In Vitro and In Vivo Characterization of Two C-11-Labeled PET Tracers for Vesicular Acetylcholine Transporter. Mol Imaging Biol 16, 773–780 (2014). https://doi.org/10.1007/s11307-014-0749-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0749-9

Key words

Navigation