Skip to main content

Advertisement

Log in

Lectin Conjugates as Biospecific Contrast Agents for MRI. Coupling of Lycopersicon esculentum Agglutinin to Linear Water-Soluble DTPA-Loaded Oligomers

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) requires synthesis of contrast media bearing targeting groups and numerous gadolinium chelating groups generating high relaxivity. This paper explores the results of linking the gadolinium chelates to the targeting group, a protein molecule, via various types of linkers. Polycondensates of diethylenetriaminepentaacetic acid (DTPA) with either diols or diamines were synthesised and coupled to the targeting group, a lectin (Lycopersicon esculentum agglutinin, tomato lectin) which binds with high affinity to specific oligosaccharide configurations in the endothelial glycocalyx. The polycondensates bear up to four carboxylic groups per constitutive unit. Gd-chelate bonds are created through dative interactions with the unshared pair of electrons on each oxygen and nitrogen atom on DTPA. This is mandatory for complexation of Gd(III) and avoidance of the severe toxicity of free gadolinium ions. The polymer–DTPA compounds were characterised by 1H NMR and mass spectrometry. The final lectin–DTPA–polycondensate conjugates were purified by fast protein liquid chromatography (FPLC). The capacity for specific binding was assessed, and the MRI properties were examined in order to evaluate the use of these oligomers as components of selective perfusional contrast agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Checkeley D, Tessier JJL, Wedge SR, Dukes M, Kendrew J, Curry B, Middleton B, Waterton JC (2003) Dynamic contrast-enhanced MRI of vascular changes induced by the VEGF-signalling inhibitor ZD4190 in human tumour xenografts. Magn Reson Imaging 21:475–482

    Article  Google Scholar 

  2. Padhani AR (2002) Functional MRI for anticancer therapy assessment. Eur J Cancer 38:2116–2127

    Article  CAS  PubMed  Google Scholar 

  3. Aime S, Botta M, Fasano M, Geninatti Crich S, Terreno E (1996) Gd(III) complexes as contrast agents for magnetic resonance imaging: a proton relaxation enhancement study of the interaction with human serum albumin. J Biol Inorg Chem 1:312–319

    Article  CAS  Google Scholar 

  4. Morel S, Terreno E, Ugazio E, Aime S, Gasco MR (1998) NMR relaxometric investigations of solid lipid nanoparticles (SLN) containing gadolinium(III) complexes. Eur J Pharm Biopharm 45:157–163

    Article  CAS  PubMed  Google Scholar 

  5. Torchilin V (2002) PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv Drug Deliv Rev 54:235–252

    Article  CAS  PubMed  Google Scholar 

  6. Weinmann HJ, Ebert W, Misselwitz B, Schmitt-Willich H (2003) Tissue-specific MR contrast agents. Eur J Radiol 46:33–44

    Article  PubMed  Google Scholar 

  7. Weissig V, Babich J, Torcilin V (2000) Long-circulating gadolinium-loaded liposomes: potential use for magnetic resonance imaging of the blood pool. Colloids Surf B Biointerfaces 18:293–299

    Article  CAS  PubMed  Google Scholar 

  8. Caravan P, Comuzzi C, Crooks W, McMurry TJ, Choppin GR, Woulfe SR (2001) Thermodynamic stability and kinetic inertness of MS-325, a new blood pool agent for magnetic resonance imaging. Inorg Chem 40:2170–2176

    Article  CAS  PubMed  Google Scholar 

  9. Klaveness J, Rongved P (1991) Water-soluble polysaccharides as carriers of paramagnetic contrast agents for magnetic resonance imaging: synthesis and relaxation properties. Carbohydr Res 214(2):315–323

    Article  PubMed  Google Scholar 

  10. Lattuada L, Lux G (2003) Synthesis of Gd-DTPA-cholesterol: a new lipophilic gadolinium complex as a potential MRI contrast agent. Tetrahedron Lett 44:3893–3895

    Article  CAS  Google Scholar 

  11. Ogan MD, Schmiedl U, Moseley ME, Grodd W, Paajanen H, Brasch RC (1987) Albumin labeled with Gd-DTPA. Invest Radiol 22:665–671

    Article  CAS  PubMed  Google Scholar 

  12. Wang SC, Wikstrom MG, White DL, Klaveness J, Holtz E, Rongved P, Moseley ME, Brasch RC (1990) Evaluation of Gd-DTPA-labeled dextran as an intravascular MR contrast agent: imaging characteristics in normal rat tissues. Radiology 175:483–488

    Article  CAS  PubMed  Google Scholar 

  13. Spanoghe M, Lanens D, Dommisse R, Van der Linden A, Alderweireldt F (1992) Proton relaxation enhancement by means of serum albumin and poly-L-lysine labeled with DTPA-Gd: relaxivities as a function of molecular weight and conjugation efficiency. Magnet Reson Imaging 10:913–917

    Article  CAS  Google Scholar 

  14. Debbage PL, Seidl S, Kreczy A, Hutzler P, Pavelka M, Lukas P (2000) Vascular permeability and hyperpermeability in a murine adenocarcinoma after fractionated radiotherapy: an ultrastructural tracer study. Histochem Cell Biol 114:259–275

    Article  CAS  PubMed  Google Scholar 

  15. Montembault V, Soutif J, Brosse J, Grote M (1997) Synthesis of chelating molecules as agents for magnetic resonance imaging, 41. Complexing properties of polycondensates prepared from diethylenetriaminepentaacetic acid bisanhydride. React Funct Polym 32:43–52

    Article  CAS  Google Scholar 

  16. Montembault V, Soutif J, Brosse J (1996) Synthesis of chelating molecules as agents for MRI. Polycondensation of DTPABA with diols and diamines. React Funct Polym 29:29–39

    Article  CAS  Google Scholar 

  17. Montembault V (1999) Synthesis and complexing propertics of resins containing aminocarboxylic acid as functional groups from diethylenetriaminepentaacetic acid bisanhydride and polyvinyl alcohols. React Funct Polym 39:253–261

    Article  CAS  Google Scholar 

  18. Mühlau A (2000) Dissertation: Isolierung und Charakterisierung von immunologisch aktiven Glycoproteinen aus Baptisia tinctoria (Wilder Indigo), Philipps-Universität Marburg – archiv. http://deposit.ddb.de/

  19. Nachbar MS, Oppenheim JD (1982) Tomato (lycopersicon esculentum) lectin. Meth Enzymol 83:363–368

    Article  CAS  Google Scholar 

  20. Kilpatrick DC, Weston J, Urbaniak SJ (1983) Purification and separation of tomato isolectins by chromatofocusing. Anal Biochem 134:205–209

    Article  CAS  PubMed  Google Scholar 

  21. Chen R, Li L (2001) Lithium and transition metal ions enable low energy collision-induced dissociation of polyglycols in electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 12:832–839

    Article  CAS  PubMed  Google Scholar 

  22. Paschkunova-Martic I, Kremser C, Mistlberger K, Shcherbakova N, Dietrich H, Talasz H, Zou Y, Hugl B, Galanski M, Sölder E, Pfaller K, Höliner I, Buchberger W, Keppler B, Debbage P (2005) Design, synthesis, physical and chemical characterisation, and biological interactions of lectin-targeted latex nanoparticles bearing Gd-DTPA chelates: an exploration of magnetic resonance molecular imaging (MRMI). Histochem Cell Biol 123:283–301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully appreciate the support of the Austrian National Bank, Jubilee project Numbers 9273 and 10844, and the excellent support of Ms. Silvia Fill, Medical University Innsbruck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Keppler.

Additional information

Significance: New lectin-targeted contrast agents bearing Gd-chelates via four oligomeric linkers were prepared and characterised in order to evaluate their potential as selective contrast media for molecular imaging.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pashkunova-Martic, I., Kremser, C., Galanski, M.S. et al. Lectin Conjugates as Biospecific Contrast Agents for MRI. Coupling of Lycopersicon esculentum Agglutinin to Linear Water-Soluble DTPA-Loaded Oligomers. Mol Imaging Biol 13, 432–442 (2011). https://doi.org/10.1007/s11307-010-0358-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0358-1

Key words

Navigation