Skip to main content
Log in

Salicylic acid and its derivatives elicit the production of diterpenes and sterols in corals and their algal symbionts: a metabolomics approach to elicitor SAR

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

The production of marine drugs in its normal habitats is often low and depends greatly on ecological conditions. Chemical synthesis of marine drugs is not economically feasible owing to their complex structures. Biotechnology application via elicitation represents a promising tool to enhance metabolites yield that has yet to be explored in soft corals.

Objectives

Study the elicitation impact of salicylic acid (SA) and six analogues in addition to a systemic acquired resistance inducer on secondary metabolites accumulation in the soft coral Sarcophyton ehrenbergi along with the symbiont zooxanthellae and if SA elicitation effect is extended to other coral species S. glaucum and Lobophyton pauciliforum.

Methods

Post elicitation in the three corals and zooxanthella, metabolites were extracted and analyzed via UHPLC-MS coupled with chemometric tools.

Results

Multivariate data analysis of the UHPLC-MS data set revealed clear segregation of SA, amino-SA, and acetyl-SA elicited samples. An increased level ca. 6- and 8-fold of the diterpenes viz., sarcophytonolide I, sarcophine and a C28-sterol, was observed in SA and amino-SA groups, respectively. Post elicitation, the level of diepoxy-cembratriene increased 1.5-fold and 2.4-fold in 1 mM SA, and acetyl-SA (aspirin) treatment groups, respectively. S. glaucum and Lobophyton pauciliforum showed a 2-fold increase of diepoxy-cembratriene levels.

Conclusion

These results suggest that SA could function as a general and somewhat selective diterpene inducing signaling molecule in soft corals. Structural consideration reveals initial structure–activity relationship (SAR) in SA derivatives that seem important for efficient diterpene and sterol elicitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

C:

Control

SA:

Salicylic acid

CSA:

2,6 dichloroisonicotinic acid

ASA:

Acetylsalicylic acid,aspirin, acteyl-SA

NSA:

4-amino salicylic acid, amino-SA

NTSA:

3,5 dinitro salicylic acid

MeSA:

Methyl salicylate (ester)

BTH:

Benzo-1,2,3-thiadiazole-7-carbothioic acid; acibenzolar

BA:

Benzoic acid

References

  • Aberg, B. (1981). Plant growth regulators. XLI. Monosubstituted benzoic acids. Swedish Journal of Agricultural Research, 11, 93–105.

    Google Scholar 

  • Anjaneyulu, A., & Venkateswara Rao, G. (1997). Chemical constituents of the soft coral species of Sarcophyton genus: a review. Journal of Indian Chemical Society, 74, 272–278.

    CAS  Google Scholar 

  • Bylesjö, M. R., M.; Cloarec, O.; Nicholson, J. K.; Holmes, E.; Trygg, J (2006). OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. Journal of Chemometrics, 20, 341–351.

    Article  Google Scholar 

  • Cheng, S.-Y., Wang, S.-K., Chiou, S.-F., Hsu, C.-H., Dai, C.-F., Chiang, M. Y., & Duh, C.-Y. (2010). Cembranoids from the octocoral Sarcophyton ehrenbergi. Journal of Natural Products, 73, 197–203. https://doi.org/10.1021/np900693r.

    Article  CAS  PubMed  Google Scholar 

  • Coll, J. C. (1992). The chemistry and chemical ecology of octocorals (Coelenterata, Anthozoa, Octocorallia). Chemical Reviews, 92, 613–631. https://doi.org/10.1021/cr00012a006.

    Article  CAS  Google Scholar 

  • Edwards, F. J. (1987). Climate and oceanography. In J. A. Edwards, S.M. Head (Ed.), Red sea, 1 ed.;. Oxford: Pergamon Press.

    Google Scholar 

  • El Sayed, K. A., Hamann, M. T., Waddling, C. A., Jensen, C., Lee, S. K., Dunstan, C. A., & Pezzuto, J. M. (1998). Structurally novel bioconversion products of the marine natural product sarcophine effectively inhibit JB6 cell transformation. The Journal of Organic Chemistry, 63, 7449–7455.

    Article  Google Scholar 

  • Elkhateeb, A., El-Beih, A. A., Gamal-Eldeen, A. M., Alhammady, M. A., Ohta, S., Paré, P. W., & Hegazy, M.-E. F. (2014). New terpenes from the Egyptian soft coral Sarcophyton ehrenbergi. Marine Drugs, 12, 1977–1986. https://doi.org/10.3390/md12041977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farag, M. A., Al-Mahdy, D. A., Meyer, A., Westphal, H., & Wessjohann, L. A. (2017). Metabolomics reveals biotic and abiotic elicitor effects on the soft coral Sarcophyton ehrenbergi terpenoid content. Scientific Reports, 7, 648.

    Article  Google Scholar 

  • Farag, M. A., Deavours, B. E., de Fátima, Â, Naoumkina, M., Dixon, R. A., & Sumner, L. W. (2009). Integrated metabolite and transcript profiling identify a biosynthetic mechanism for hispidol in Medicago truncatula cell cultures. Plant Physiology, 151, 1096–1113.

    Article  CAS  Google Scholar 

  • Farag, M. A., Porzel, A., Al-Hammady, M. A., Hegazy, M.-E. F., Meyer, A., Mohamed, T. A., Westphal, H., & Wessjohann, L. A. (2016). Soft corals biodiversity in the Egyptian Red Sea: a comparative MS and NMR metabolomics approach of wild and aquarium grown species. Journal of Proteome Research, 15, 1274–1287.

    Article  CAS  Google Scholar 

  • Farag, M. A., & Wessjohann, L. A. (2012). Metabolome classification of commercial hypericum perforatum (St. Johnʼs Wort) preparations via UPLC-qTOF-MS and chemometrics. Planta Medica, 78, 488–496.

    Article  CAS  Google Scholar 

  • Feller, M., Rudi, A., Berer, N., Goldberg, I., Stein, Z., Benayahu, Y., Schleyer, M., & Kashman, Y. (2004). Isoprenoids of the soft coral Sarcophyton g laucum: Nyalolide, a new biscembranoid, and other terpenoids. Journal of Natural Products, 67, 1303–1308.

    Article  CAS  Google Scholar 

  • Ferchmin, P., Pagán, O. R., Ulrich, H., Szeto, A. C., Hann, R. M., & Eterović, V. A. (2009). Actions of octocoral and tobacco cembranoids on nicotinic receptors. Toxicon, 54, 1174–1182.

    Article  CAS  Google Scholar 

  • González, Y., Torres-Mendoza, D., Jones, G. E., & Fernandez, P. L. 2015. Marine diterpenoids as potential anti-inflammatory agents. Mediators of Inflammation, 2015,:263543. https://doi.org/10.1155/2015/263543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Marine and Freshwater Research, 50, 839–866.

    Article  Google Scholar 

  • Iseman, M. (2002). Tuberculosis therapy: past, present and future. European Respiratory Journal, 20, 87S–94 s.

    Article  Google Scholar 

  • Jaramillo, P., Pérez, P., & Fuentealba, P. (2007). Relationship between basicity and nucleophilicity. Journal of Physical Organic Chemistry, 20, 1050–1057.

    Article  CAS  Google Scholar 

  • Nishi, A. (1994). Effect of elicitors on the production of secondary metabolites. New York: Elsevier Science. Volume 14.

    Book  Google Scholar 

  • Pophristic, V., & Goodman, L. (2001). Hyperconjugation not steric repulsion leads to the staggered structure of ethane. Nature, 411, 565–568.

    Article  CAS  Google Scholar 

  • Roberts, S. C., & Shuler, M. L. (1997). Large-scale plant cell culture. Current Opinion in Biotechnology, 8, 154–159.

    Article  CAS  Google Scholar 

  • Smith, C. A., Want, E. J., O’maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.

    Article  CAS  Google Scholar 

  • van der Kooy, F., Maltese, F., Choi, Y. H., Kim, H. K., & Verpoorte, R. (2009). Quality control of herbal material and phytopharmaceuticals with MS and NMR based metabolic fingerprinting. Planta Medica, 75, 763–775.

    Article  Google Scholar 

  • Vimala, R., & Suriachandraselvan, M. (2009). Induced resistance in bhendi against powdery mildew by foliar application of salicylic acid. Journal of Biopesticides, 2, 111–114.

    CAS  Google Scholar 

  • Wu, J., & Lin, L. (2002). Elicitor-like effects of low-energy ultrasound on plant (Panax ginseng) cells: induction of plant defense responses and secondary metabolite production. Applied Microbiology and Biotechnology, 59, 51–57. https://doi.org/10.1007/s00253-002-0971-2.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Li, J., Su, J., Liang, Y., Yang, X., Zheng, K., & Zeng, L. (2006). Cytotoxic diterpenoids from the soft coral Sarcophyton crassocaule. Journal of Natural Products, 69, 1476–1480.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. M.A. Farag thanks the Hanse-Wissenschaftskolleg (HWK), Germany, for financial support. The study was further supported by the Leibniz Centre for Tropical Marine Researchand the Leibniz Institute of Plant Biochemistry.

Author information

Authors and Affiliations

Authors

Contributions

M.A.F. and A.M. conducted the experiments; M.A.F. performed the data analysis, A.A.M., M.A.F. and L.A.W. co-wrote the manuscript; M.A.F and L.A.W. designed the study and edited the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Mohamed A. Farag.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 161 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farag, M.A., Maamoun, A.A., Meyer, A. et al. Salicylic acid and its derivatives elicit the production of diterpenes and sterols in corals and their algal symbionts: a metabolomics approach to elicitor SAR. Metabolomics 14, 127 (2018). https://doi.org/10.1007/s11306-018-1416-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-018-1416-y

Keywords

Navigation