Skip to main content
Log in

Comparative metabolomics analysis of the key metabolic nodes in propionic acid synthesis in Propionibacterium acidipropionici

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Propionic acid (PA) is an important platform chemical used in the agriculture, food, and pharmaceutical industries. The biosynthesis of PA by propionibacteria has become an attractive alternative to traditional petrochemical processes owing to the environmentally friendly features of biorefinery. In a previous study, we significantly increased PA production in Propionibacterium acidipropionici by improving acid tolerance via genome shuffling. In this study, we undertook metabolomics analysis of parental P. acidipropionici and its genome-shuffled mutant to find the key metabolic nodes influencing PA production. In total, 142 intracellular metabolites were identified, of which those produced in amounts of greater than twofold difference between the two strains were further investigated with principal components analysis. The regulatory functions of key metabolites involved in the PA biosynthetic pathway were also forecast and analyzed according to their potential impact on metabolism. The results indicated that the amounts of metabolic intermediates of glycolysis, the Wood–Werkman cycle, and amino acid metabolism differed markedly between parental Pacidipropionici and its mutants. Based on the results of comparative metabolomics analysis, exogenous addition of key metabolites (precursors and amino acids) was performed to improve PA production. Under optimized conditions, 105 mM lactate, 20 mM fumarate, and 30 mM succinate were added to the culture of P. acidipropionici CGMCC 1.2230 in a 3-L anaerobic fermenter, and the PA titer increased from 23.1 ± 12 to 35.8 ± 1.0 g/L. This study revealed the key metabolic nodes of PA synthesis in Pacidipropionici through comparative metabolomics analysis, which may be helpful for the metabolic engineering of Pacidipropionici for improved PA production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arbona, V., Manzi, M., Ollas, C. D., & Gómez-Cadenas, A. (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences, 14(3), 4885–4911.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barding, G. A, Jr, Béni, S., Fukao, T., Bailey-Serres, J., & Larive, C. K. (2012). Comparison of GC-MS and NMR for metabolite profiling of rice subjected to submergence stress. Journal of Proteome Research, 12(2), 898–909.

    Article  PubMed  Google Scholar 

  • Castillo, S., Gopalacharyulu, P., Yetukuri, L., & Orešič, M. (2011). Algorithms and tools for the preprocessing of LC-MS metabolomics data. Chemometrics and Intelligent Laboratory Systems, 108(1), 23–32.

    Article  CAS  Google Scholar 

  • Chen, F., Fen, X., Xu, H., Zhang, D., & Ouyang, P. (2012). Propionic acid production in a plant fibrous-bed bioreactor with immobilized Propionibacterium freudenreichii CCTCC M207015. Journal of Biotechnology, 164, 202–210.

    Article  CAS  PubMed  Google Scholar 

  • Choi, H. K., Yoon, J. H., Kim, Y. S., & Kwon, D. Y. (2007). Metabolomic profiling of Cheonggukjang during fermentation by 1H NMR spectrometry and principal components analysis. Process Biochemistry, 42(2), 263–266.

    Article  CAS  Google Scholar 

  • Coral, J., Karp, S. G., de Souza Vandenberghe, L. P., Parada, J. L., Pandey, A., & Soccol, C. R. (2008). Batch fermentation model of propionic acid production by Propionibacterium acidipropionici in different carbon sources. Applied Biochemistry and Biotechnology, 151(2–3), 333–341.

    Article  CAS  PubMed  Google Scholar 

  • Deborde, C., & Boyaval, P. (2000). Interactions between pyruvate and lactate metabolism in Propionibacterium freudenreichii subsp. shermanii: In vivo 13C nuclear magnetic resonance studies. Applied and Environmental Microbiology, 66(5), 2012–2020.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dietmair, S., Hodson, M. P., Quek, L. E., Timmins, N. E., Chrysanthopoulos, P., Jacob, S. S., et al. (2012). Metabolite profiling of CHO cells with different growth characteristics. Biotechnology and Bioengineering, 109(6), 1404–1414.

    Article  CAS  PubMed  Google Scholar 

  • Ding, M. Z., Zhou, X., & Yuan, Y. J. (2010). Metabolome profiling reveals adaptive evolution of Saccharomyces cerevisiae during repeated vacuum fermentations. Metabolomics, 6(1), 42–55.

    Article  CAS  Google Scholar 

  • Du, J., Zhou, J., Xue, J., Song, H., & Yuan, Y. (2012). Metabolomic profiling elucidates community dynamics of the Ketogulonicigenium vulgare-Bacillus megaterium consortium. Metabolomics, 8(5), 960–973.

    Article  CAS  Google Scholar 

  • Feng, X., Chen, F., Xu, H., Wu, B., Li, H., Li, S., et al. (2011). Green and economical production of propionic acid by Propionibacterium freudenreichii CCTCC M207015 in plant fibrous-bed bioreactor. Bioresource technology, 102(10), 6141–6146.

    Article  CAS  PubMed  Google Scholar 

  • Guan, N., Liu, L., Shin, H. D., Chen, R. R., Zhang, J., Li, J., et al. (2013). Systems-level understanding how Propionibacterium acidipropionici respond to propionic acid stress at the microenvironment levels: Mechanism and application. Journal of Biotechnology, 167(1), 56–63.

    Article  CAS  PubMed  Google Scholar 

  • Guan, N., Liu, L., Zhuge, X., Xu, Q., Li, J., Du, C., et al. (2012). Genome-shuffling improves acid tolerance of Propionibacterium acidipropionici and propionic acid production. Advances in Chemistry Research, 15, 143–152.

    CAS  Google Scholar 

  • Hasunuma, T., Sanda, T., Yamada, R., Yoshimura, K., Ishii, J., & Kondo, A. (2011). Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microbial Cell Factories, 10, 2–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jin, Z., & Yang, S. T. (1998). Extractive fermentation for enhanced propionic acid production from lactose by Propionibacterium acidipropionici. Biotechnology Progress, 14(3), 457–465.

    Article  CAS  PubMed  Google Scholar 

  • Len, A. C., Harty, D. W., & Jacques, N. A. (2004). Proteome analysis of Streptococcus mutans metabolic phenotype during acid tolerance. Microbiology, 150(5), 1353–1366.

    Article  CAS  PubMed  Google Scholar 

  • Liu, L., Zhu, Y., Li, J., Wang, M., Lee, P., Du, G., et al. (2012). Microbial production of propionic acid from propionibacteria: Current state, challenges and perspectives. Critical Review in Biotechnology, 32(4), 374–381.

    Article  CAS  Google Scholar 

  • Lu, P., Ma, D., Chen, Y., Guo, Y., Chen, G. Q., Deng, H., et al. (2013). l-glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia. Cell Research, 23(5), 635–644.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martínez-Campos, R., & de la Torre, M. (2002). Production of propionate by fed-batch fermentation of Propionibacterium acidipropionici using mixed feed of lactate and glucose. Biotechnology Letters, 24(6), 427–431.

    Article  Google Scholar 

  • Mashego, M., Wu, L., Van Dam, J., Ras, C., Vinke, J., Van Winden, W., et al. (2004). MIRACLE: Mass isotopomer ratio analysis of U-13C-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnology and Bioengineering, 85(6), 620–628.

    Article  CAS  PubMed  Google Scholar 

  • Owen, O. E., Kalhan, S. C., & Hanson, R. W. (2002). The key role of anaplerosis and cataplerosis for citric acid cycle function. Journal of Biological Chemistry, 277, 30409–30412.

    Article  CAS  PubMed  Google Scholar 

  • Parizzi, L. P., Grassi, M. C. B., Llerena, L. A., Carazzolle, M. F., Queiroz, V. L., Lunardi, I., et al. (2012). The genome sequence of Propionibacterium acidipropionici provides insights into its biotechnological and industrial potential. BMC Genomics, 13(1), 562.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piveteau, P. (1999). Metabolism of lactate and sugars by dairy propionibacteria: A review. Le Lait, 79(1), 23–41.

    Article  CAS  Google Scholar 

  • Pluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11(1), 395–405.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruhal, R., & Choudhury, B. (2012). Use of an osmotically sensitive mutant of Propionibacterium freudenreichii subspp. shermanii for the simultaneous productions of organic acids and trehalose from biodiesel waste based crude glycerol. Bioresource technology, 109, 131–139.

    Article  CAS  PubMed  Google Scholar 

  • Scalbert, A., Brennan, L., Fiehn, O., Hankemeier, T., Kristal, B. S., van Ommen, B., et al. (2009). Mass-spectrometry-based metabolomics: Limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics, 5(4), 435–458.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Senouci-Rezkallah, K., Schmitt, P., & Jobin, M. P. (2011). Amino acids improve acid tolerance and internal pH maintenance in Bacillus cereus ATCC14579 strain. Food Microbiology, 28(3), 364–372.

    Article  CAS  PubMed  Google Scholar 

  • Suwannakham, S., Huang, Y., & Yang, S. T. (2006). Construction and characterization of ack knock-out mutants of Propionibacterium acidipropionici for enhanced propionic acid fermentation. Biotechnology and Bioengineering, 94(2), 383–395.

    Article  CAS  PubMed  Google Scholar 

  • Suwannakham, S., & Yang, S. T. (2005). Enhanced propionic acid fermentation by Propionibacterium acidipropionici mutant obtained by adaptation in a fibrous-bed bioreactor. Biotechnology and Bioengineering, 91(3), 325–337.

    Article  CAS  PubMed  Google Scholar 

  • Taymaz-Nikerel, H., De Mey, M., Ras, C., ten Pierick, A., Seifar, R. M., Van Dam, J. C., et al. (2009). Development and application of a differential method for reliable metabolome analysis in Escherichia coli. Analytical Biochemistry, 386(1), 9–19.

    Article  CAS  PubMed  Google Scholar 

  • Thierry, A., Deutsch, S. M., Falentin, H., Dalmasso, M., Cousin, F. J., & Jan, G. (2011). New insights into physiology and metabolism of Propionibacterium freudenreichii. International Journal of Food Microbiology, 149(1), 19–27.

    Article  CAS  PubMed  Google Scholar 

  • Want, E. J., Nordström, A., Morita, H., & Siuzdak, G. (2007). From exogenous to endogenous: The inevitable imprint of mass spectrometry in metabolomics. Journal of Proteome Research, 6(2), 459–468.

    Article  CAS  PubMed  Google Scholar 

  • Wood, H. (1981). Metabolic cycles in the fermentation by propionic acid bacteria. Current Topics in Cellular Regulation, 18, 255–287.

    Article  CAS  PubMed  Google Scholar 

  • Wu, G. (2009). Amino acids: Metabolism, functions, and nutrition. Amino Acids, 37(1), 1–17.

    Article  PubMed  Google Scholar 

  • Xia, M., Huang, D., Li, S., Wen, J., Jia, X., & Chen, Y. (2013). Enhanced FK506 production in Streptomyces tsukubaensis by rational feeding strategies based on comparative metabolic profiling analysis. Biotechnology and Bioengineering, 110, 2717–2730.

    Article  CAS  PubMed  Google Scholar 

  • Yin, X., Madzak, C., Du, G., Zhou, J., & Chen, J. (2012). Enhanced alpha-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by regulation of the pyruvate carboxylation pathway. Applied Microbiology and Biotechnology, 96(6), 1527–1537.

    Article  CAS  PubMed  Google Scholar 

  • Zeppa, G., Conterno, L., & Gerbi, V. (2001). Determination of organic acids, sugars, diacetyl, and acetoin in cheese by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry, 49(6), 2722–2726.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, A., & Yang, S. T. (2009a). Engineering Propionibacterium acidipropionici for enhanced propionic acid tolerance and fermentation. Biotechnology and Bioengineering, 104(4), 766–773.

    CAS  PubMed  Google Scholar 

  • Zhang, A., & Yang, S. T. (2009b). Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici. Process Biochemistry, 44(12), 1346–1351.

    Article  CAS  Google Scholar 

  • Zhu, Y., Li, J., Tan, M., Liu, L., Jiang, L., Sun, J., et al. (2010). Optimization and scale-up of propionic acid production by propionic acid-tolerant Propionibacterium acidipropionici with glycerol as the carbon source. Bioresource Technology, 101(22), 8902–8906.

    Article  CAS  PubMed  Google Scholar 

  • Zhuge, X., Liu, L., Shin, H., Chen, R. R., Li, J., Du, G., et al. (2013). Development of a Propionibacterium-Escherichia coli shuttle vector as a useful tool for metabolic engineering of Propionibacterium jensenii, an efficient producer of propionic acid. Applied and Environmental Microbiology, 80, 4595–4602.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the 973 Program (2013CB733902), 111 Project (111-2-06), 863 Program (2011AA100905), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Conflict of interest

The authors declare that they have no conflict of interests.

Compliance with ethical requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongping Shi or Long Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, N., Li, J., Shin, Hd. et al. Comparative metabolomics analysis of the key metabolic nodes in propionic acid synthesis in Propionibacterium acidipropionici . Metabolomics 11, 1106–1116 (2015). https://doi.org/10.1007/s11306-014-0766-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0766-3

Keywords

Navigation