Skip to main content
Log in

Exposure to ionizing radiation reveals global dose- and time-dependent changes in the urinary metabolome of rat

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The potential for exposures to ionizing radiation (IR) has increased in recent years. Although advances have been made, understanding the global metabolic response as a function of both dose and exposure time is challenging considering the complexity of the responses. Herein we report our findings on the dose- and time-dependency of the urinary response to IR in the male rat using radiation metabolomics. Urine samples were collected from adult male rats, exposed to 0.5–10 Gy γ-radiation, both before from 6 to 72 h following exposures. Samples were analyzed by liquid chromatography coupled with time-of-flight mass spectrometry, and deconvoluted mass chromatographic data were initially analyzed by principal component analysis. However, the breadth and complexity of the data necessitated the development of a novel approach to summarizing biofluid constituents after exposure, called Visual Analysis of Metabolomics Package (VAMP). VAMP revealed clear urine metabolite profile differences to as little as 0.5 Gy after 6 h exposure. Via VAMP, it was discovered that the response to radiation exposure found in rat urine is characterized by an overall net down-regulation of ion excretion with only a modest number of ions excreted in excess over pre-exposure levels. Our results show both similarities and differences with the published mouse urine response and a dose- and time-dependent net decrease in urine ion excretion associated with radiation exposure. These findings mark an important step in the development of minimally invasive radiation biodosimetry. VAMP should have general applicability in metabolomics to visualize overall differences and trends in many sample sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DMS–MS:

Differential mobility spectrometry–mass spectrometry

AFRRI:

Armed Forces Radiobiology Research Institute

MS:

Mass spectrometer

UPLC–TOFMS:

Ultra-performance liquid chromatography–time of flight mass spectrometry

ESI:

Electrospray ionization

ESI+:

Positive ESI

ESI−:

Negative ESI

PCA:

Principal component analysis

PC:

Principal component

IR:

Ionizing radiation

IS:

Internal standard

ppm:

Parts per million

CI:

Confidence interval

VAMP:

Visual Analysis of Metabolomics Package

References

  • Amendola, R., Basso, E., Pacifici, P. G., Piras, E., Giovanetti, A., Volpato, C., et al. (2006). Ret, Abl1 (cAbl) and Trp53 gene fragmentations in comet-FISH assay act as in vivo biomarkers of radiation exposure in C57BL/6 and CBA/J mice. Radiation Research, 165, 553–561.

    Article  CAS  PubMed  Google Scholar 

  • Castro-Perez, J., Plumb, R., Granger, J. H., Beattie, I., Joncour, K., & Wright, A. (2005). Increasing throughput and information content for in vitro drug metabolism experiments using ultra-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer. Rapid Communications in Mass Spectrometry, 19, 843–848.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C., Brenner, D. J., & Brown, T. R. (2011). Identification of urinary biomarkers from X-irradiated mice using NMR spectroscopy. Radiation Research, 175, 622–630.

    Article  CAS  PubMed  Google Scholar 

  • Christodouleas, J. P., Forrest, R. D., Ainsley, C. G., Tochner, Z., Hahn, S. M., & Glatstein, E. (2011). Short-term and long-term health risks of nuclear-power-plant accidents. New England Journal of Medicine, 364, 2334–2341.

    Article  CAS  PubMed  Google Scholar 

  • Coy, S. L., Cheema, A. K., Tyburski, J. B., Laiakis, E. C., Collins, S. P., & Fornace, A. J. (2011). Radiation metabolomics and its potential in biodosimetry. International Journal of Radiation Biology, 87, 802–823.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coy, S. L., Krylov, E. V., Schneider, B. B., Covey, T. R., Brenner, D. J., Tyburski, J. B., et al. (2010). Detection of radiation-exposure biomarkers by differential mobility prefiltered mass spectrometry (DMS-MS). International Journal of Mass Spectrometry, 291, 108–117.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dewey, W. C., & Humphrey, R. M. (1965). Increase in radiosensitivity to ionizing radiation related to replacement of thymidine in mammalian cells with 5-bromodeoxyuridine. Radiation Research, 26, 538–553.

    Article  CAS  PubMed  Google Scholar 

  • Dizdaroglu, M., & Simic, M. G. (1984). Radiation-induced crosslinking of cytosine. Radiation Research, 100, 41–46.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, S. R., Qi, Z., Bottinger, E. P., Breyer, M. D., & Sharma, K. (2004). Utility of endogenous creatinine clearance as a measure of renal function in mice. Kidney International, 65, 1959–1967.

    Article  CAS  PubMed  Google Scholar 

  • Grace, M. B., Moyer, B. R., Prasher, J., Cliffer, K. D., Ramakrishnan, N., Kaminski, J., et al. (2010). Rapid radiation dose assessment for radiological public health emergencies: Roles of NIAID and BARDA. Health Physics, 98, 172–178.

    Article  CAS  PubMed  Google Scholar 

  • Hafer, N., Cassatt, D., Dicarlo, A., Ramakrishnan, N., Kaminski, J., Norman, M. K., et al. (2010). NIAID/NIH radiation/nuclear medical countermeasures product research and development program. Health Physics, 98, 903–905.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, C. H., Patterson, A. D., Krausz, K. W., Kalinich, J. F., Tyburski, J. B., Kang, D. W., et al. (2012). Radiation Metabolomics. 5. Identification of urinary biomarkers of ionizing radiation exposure in nonhuman primates by mass spectrometry-based metabolomics. Radiation Research, 178, 328–340.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson, C. H., Patterson, A. D., Krausz, K. W., Lanz, C., Kang, D. W., Luecke, H., et al. (2011). Radiation metabolomics. 4. UPLC-ESI-QTOFMS-based metabolomics for urinary biomarker discovery in gamma-irradiated rats. Radiation Research, 175, 473–484.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kermani, P., Leclerc, G., Martel, R., & Fareh, J. (2001). Effect of ionizing radiation on thymidine uptake, differentiation, and VEGFR2 receptor expression in endothelial cells: the role of VEGF(165). International Journal of Radiation Oncology Biology Physics, 50, 213–220.

    Article  CAS  Google Scholar 

  • Khan, A. R., Rana, P., Devi, M. M., Chaturvedi, S., Javed, S., Tripathi, R. P., et al. (2011). Nuclear magnetic resonance spectroscopy-based metabonomic investigation of biochemical effects in serum of gamma-irradiated mice. International Journal of Radiation Biology, 87, 91–97.

    Article  CAS  PubMed  Google Scholar 

  • Kurohara, S. S., & Altman, K. I. (1962). Effect of exposure to ionizing radiation on creatine concentration in human and rat erythrocytes. Nature, 196, 151–153.

    Article  Google Scholar 

  • Lanz, C., Patterson, A. D., Slavik, J., Krausz, K. W., Ledermann, M., Gonzalez, F. J., et al. (2009). Radiation metabolomics. 3. Biomarker discovery in the urine of gamma-irradiated rats using a simplified metabolomics protocol of gas chromatography-mass spectrometry combined with random forests machine learning algorithm. Radiation Research, 172, 198–212.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee, S. H., Jo, S. H., Lee, S. M., Koh, H. J., Song, H., Park, J. W., et al. (2004). Role of NADP+-dependent isocitrate dehydrogenase (NADP+-ICDH) on cellular defence against oxidative injury by gamma-rays. International Journal of Radiation Biology, 80, 635–642.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H. J., Lee, M., Kang, C. M., Jeoung, D., Bae, S., Cho, C. K., et al. (2007). Identification of possible candidate biomarkers for local or whole body radiation exposure in C57BL/6 mice. International Journal of Radiation Oncology Biology Physics, 69, 1272–1281.

    Article  CAS  Google Scholar 

  • Mak, T. D., Laiakis, E. C., Goudarzi, M., & Fornace, A. J, Jr. (2014). MetaboLyzer: A novel statistical workflow for analyzing postprocessed LC-MS metabolomics data. Analytical Chemistry, 86, 506–513.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mansour, H. H. (2006). Protective role of carnitine ester against radiation-induced oxidative stress in rats. Pharmacological Research, 54, 165–171.

    Article  CAS  PubMed  Google Scholar 

  • Noda, I. (2008). Scaling techniques to enhance two-dimensional correlation spectra. J Molecular Structure, 883, 216–227.

    Article  Google Scholar 

  • Ossetrova, N. I., Sandgren, D. J., Gallego, S., & Blakely, W. F. (2010). Combined approach of hematological biomarkers and plasma protein SAA for improvement of radiation dose assessment triage in biodosimetry applications. Health Physics, 98, 204–208.

    Article  CAS  PubMed  Google Scholar 

  • Partridge, M. A., Chai, Y., Zhou, H., & Hei, T. K. (2010). High-throughput antibody-based assays to identify and quantify radiation-responsive protein biomarkers. International Journal of Radiation Biology, 86, 321–328.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2, 559–572.

    Article  Google Scholar 

  • Plumb, R., Castro-Perez, J., Granger, J., Beattie, I., Joncour, K., & Wright, A. (2004). Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 18, 2331–2337.

    Article  CAS  PubMed  Google Scholar 

  • Porciani, S., Lanini, A., Balzi, M., Faraoni, P., & Becciolini, A. (2001). Polyamines as biochemical indicators of radiation injury. Phys Med, 17(Suppl 1), 187–188.

    PubMed  Google Scholar 

  • Randic, M., & Supek, Z. (1961). Urinary excretion of 5-hydroxyindolacetic acid after a single whole-body X-irradiation in normal and adrenalectomized rats. International Journal of Radiation Biology, 4, 151–153.

    Article  CAS  PubMed  Google Scholar 

  • Reisz, J. A., Bansal, N., Qian, J., Zhao, W., & Furdui, C. M. (2014). Effects of ionizing radiation on biological molecules-mechanisms of damage and emerging methods of detection. Antioxidants & Redox Signaling, 21, 260–292.

    Article  CAS  Google Scholar 

  • Roux, A., Lison, D., Junot, C., & Heilier, J. F. (2011). Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: A review. Clinical Biochemistry, 44, 119–135.

    Article  CAS  PubMed  Google Scholar 

  • Sezen, O., Ertekin, M. V., Demircan, B., Karslioglu, I., Erdogan, F., Kocer, I., et al. (2008). Vitamin E and L-carnitine, separately or in combination, in the prevention of radiation-induced brain and retinal damages. Neurosurg Rev, 31, 205–213. discussion 213.

    Article  PubMed  Google Scholar 

  • Takahashi, N., Boysen, G., Li, F., Li, Y., & Swenberg, J. A. (2007). Tandem mass spectrometry measurements of creatinine in mouse plasma and urine for determining glomerular filtration rate. Kidney International, 71, 266–271.

    Article  CAS  PubMed  Google Scholar 

  • Tang, X., Zheng, M., Zhang, Y., Fan, S., & Wang, C. (2013). Estimation value of plasma amino acid target analysis to the acute radiation injury early triage in the rat model. Metabolomics, 9, 853–863.

    Article  CAS  Google Scholar 

  • Tyburski, J. B., Patterson, A. D., Krausz, K. W., Slavik, J., Fornace, A. J. J., Gonzalez, F. J., et al. (2008). Radiation metabolomics. 1. Identification of minimally invasive urine biomarkers for gamma-radiation exposure in mice. Radiation Research, 170, 1–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tyburski, J. B., Patterson, A. D., Krausz, K. W., Slavik, J., Fornace, A. J, Jr, Gonzalez, F. J., et al. (2009). Radiation metabolomics. 2. Dose- and time-dependent urinary excretion of deaminated purines and pyrimidines after sublethal gamma-radiation exposure in mice. Radiation Research, 172, 42–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Visser, W., Van Roermund, C., Ijlst, L., Waterham, H., & Wanders, R. (2007). Metabolite transport across the peroxisomal membrane. Biochemical Journal, 401, 365–375.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang, Y., Zhou, X., Li, C., Wu, J., Kuo, J. E., & Wang, C. (2014). Assessment of early triage for acute radiation injury in rat model based on urinary amino acid target analysis. Molecular BioSystems, 10, 1441–1449.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Institute of Health (National Institute of Allergy and Infectious Diseases) Grant U19 A1067773. F.J.G. is supported by the National Cancer Instititue Intramural Research Program in the Center for Cancer Research. J.F.K. was supported in part by Grant DARPA-FY08-0004 from the Defense Advanced Research Projects Agency. The views expressed are those of the authors and do not reflect the official policy or position of the Armed Forces Radiobiology Research Institute, the Uniformed Services University, the Department of Defense, or the United States Government. The authors would like to thank Drs. Andrew D. Patterson (Penn. State Univ.) and David J. Brenner for helpful discussions and their support.

Conflict of interest

The authors have no conflicts of interest to report.

Ethical statement

All animal experiments were approved by the Armed Forces Radiobiology Research Institute’s Animal Care and Use Committee prior to initiation. Animals were maintained in a facility accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International in accordance with the Guide for the Care and Use of Laboratory Animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert J. Fornace Jr..

Additional information

Tytus D. Mak and John B. Tyburski have contributed equally to this project.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4374 kb)

Supplementary material 2 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mak, T.D., Tyburski, J.B., Krausz, K.W. et al. Exposure to ionizing radiation reveals global dose- and time-dependent changes in the urinary metabolome of rat. Metabolomics 11, 1082–1094 (2015). https://doi.org/10.1007/s11306-014-0765-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0765-4

Keywords

Navigation