Skip to main content
Log in

A metabonomic study of inhibition of GABA uptake in the cerebral cortex

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

GABAergic activity is regulated by rapid, high affinity uptake of GABA from the synapse. Perturbation of GABA reuptake has been implicated in neurological disease and inhibitors of GABA transporters (GAT) have been used therapeutically but little detail is known about the ramifications of GAT inhibition on brain neurochemistry. Here, we incubated Guinea pig cortical tissue slices with [3-13C]pyruvate and major, currently available GABA uptake inhibitors. Metabolic fingerprints were generated from these experiments using 13C/1H NMR spectroscopy. These fingerprints were analyzed using multivariate statistical approaches and compared with an existing library of fingerprints of activity at GABA receptors. This approach identified five distinct clusters of metabolic activity induced by blocking GABA uptake. Inhibition of GABA uptake via GAT1 produced patterns similar to activity at mainstream GABAergic synapses in particular those containing α1-subunits but still statistically separable. This indicated that inhibition of GABA uptake, an indirect method of activating GABA receptors, produces different effects to direct receptor activation or to exogenous GABA. The mechanism of inhibitor function also produced different outcomes, with the channel blocker SKF 89976A yielding a unique metabolic response. Blocking GAT1 and GAT3 simultaneously induces a large metabolic response consistent with induction of tonic inhibition via high affinity GABA receptors. Blocking BGT produces patterns similar to activity at less common receptors such as those containing α5 subunits. This approach is useful for determining where in the spectrum of GABAergic responses a particular GABA transport inhibitor is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Borden, L. A., Dhar, T. G., Smith, K. E., Branchek, T. A., Gluchowski, C., & Weinshank, R. L. (1994). Cloning of the human homologue of the GABA transporter GAT-3 and identification of a novel inhibitor with selectivity for this site. Receptors and Channels, 2, 207–213.

    CAS  PubMed  Google Scholar 

  • Borden, L. A., Smith, K. E., Gustafson, E. L., Branchek, T. A., & Weinshank, R. L. (1995). Cloning and expression of a betaine/GABA transporter from human brain. Journal of Neurochemistry, 64, 977–984.

    CAS  PubMed  Google Scholar 

  • Bröer, S., Bröer, A., Hansen, J. T., Bubb, W. A., Balcar, V. J., Nasrallah, F. A., et al. (2007). Alanine metabolism, transport and cycling in the brain. Journal of Neurochemistry, 102, 1758–1770.

    Article  PubMed  CAS  Google Scholar 

  • Broer, S., Broer, A., Schneider, H. P., Stegen, C., Halestrap, A. P., & Deitmer, J. W. (1999). Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes. Biochemical Journal, 341, 529–535.

    Article  CAS  PubMed  Google Scholar 

  • Bröer, S., & Brookes, N. (2001). Transfer of glutamine between astrocytes and neurons. Journal of Neurochemistry, 77, 705–719.

    Article  PubMed  Google Scholar 

  • Cammack, J. N., & Schwartz, E. A. (1996). Channel behavior in a gamma-aminobutyrate transporter. Proceedings of the National Academy of Sciences of the United States of America, 93, 723–727.

    Article  CAS  PubMed  Google Scholar 

  • Chatton, J. Y., Pellerin, L., & Magistretti, P. J. (2003). GABA uptake into astrocytes is not associated with significant metabolic cost: Implications for brain imaging of inhibitory transmission. Proceedings of the National Academy of Sciences of the United States of America, 100, 12456–12461.

    Article  CAS  PubMed  Google Scholar 

  • Conti, F., Minelli, A., & Melone, M. (2004). GABA transporters in the mammalian cerebral cortex: Localization, development and pathological implications. Brain Research Reviews, 45, 196–212.

    Article  CAS  PubMed  Google Scholar 

  • Coomans, D., Broeckaert, I., Derde, M. P., Tassin, A., Massart, D. L., & Wold, S. (1984). Use of a microcomputer for the definition of multivariate confidence regions in medical diagnosis based on clinical laboratory profiles. Computers and Biomedical Research, 17, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Dalby, N. O. (2000). GABA level increasing and anticonvulsant effects of three different GABA uptake inhibitors. Neuropharmacology, 39, 2399–2407.

    Article  CAS  PubMed  Google Scholar 

  • Dalby, N. O. (2003). Inhibition of γ-aminobutyric acid uptake: Anatomy, physiology and effects against epileptic seizures. European Journal of Pharmacology, 479, 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Dericioglu, N., Garganta, C. L., Petroff, O. A., Mendelsohn, D., & Williamson, A. (2008). Blockade of GABA synthesis only affects neural excitability under activated conditions in rat hippocampal slices. Neurochemistry International, 53, 22–32.

    Article  CAS  PubMed  Google Scholar 

  • Dienel, G. A., & Cruz, N. F. (2009). Exchange-mediated dilution of brain lactate specific activity: Implications for the origin of glutamate dilution and the contributions of glutamine dilution and other pathways. Journal of Neurochemistry, 109(s1), 30–37.

    Article  CAS  PubMed  Google Scholar 

  • Farrant, M., & Nusser, Z. (2005). Variations on an inhibitory theme: Phasic and tonic activation of GABAA receptors. Nature Reviews. Neuroscience, 6, 215–229.

    Article  CAS  PubMed  Google Scholar 

  • Galvan, A., Villalba, R. M., West, S. M., Maidment, N. T., Ackerson, L. C., Smith, Y., et al. (2005). GABAergic modulation of the activity of globus pallidus neurons in primates: In vivo analysis of the functions of GABA receptors and GABA transporters. Journal of Neurophysiology, 94, 990–1000.

    Article  CAS  PubMed  Google Scholar 

  • Giusti, P., Guidotti, A., Wojciech, D., Auta, J., & Costa, E. (1990). Neuropharmacological evidence for an interaction between the GABA uptake inhibitor Cl-966 and anxiolytic benzodiazepines. Drug Development Research, 21, 217–225.

    Article  CAS  Google Scholar 

  • Griffin, J. L., Keun, H., Moskau, D., Rae, C., & Nicholson, J. K. (2003). Compartmentation of metabolism probed by [2-13C]alanine: Improved 13C NMR sensitivity using a CryoProbe detects evidence of a glial metabolon. Neurochemistry International, 42, 93–99.

    Article  CAS  PubMed  Google Scholar 

  • Griffin, J. L., Rae, C., Dixon, R. M., Radda, G. K., & Matthews, P. M. (1998). Excitatory amino acid synthesis in hypoxic brain slices: Does alanine act as a substrate for glutamate production in hypoxia? Journal of Neurochemistry, 71, 2477–2486.

    Article  CAS  PubMed  Google Scholar 

  • Iversen, L. (2006). Neurotransmitter transporter and their impact on the development of psychopharmacology. British Journal of Pharmacology, 147, s82–s88.

    Article  CAS  PubMed  Google Scholar 

  • Keros, S., & Hablitz, J. J. (2005). Subtype-specific GABA transporter antagonists synergistically modulate phasic and tonic GABA(A) conductances in rat neocortex. Journal of Neurophysiology, 94, 2073–2085.

    Article  CAS  PubMed  Google Scholar 

  • Kinney, G. A. (2005). GAT-3 transporters regulate inhibition in the neocortex. Journal of Neurophysiology, 94, 4533–4537.

    Article  CAS  PubMed  Google Scholar 

  • Krause, S., & Schwarz, W. (2005). Identification and selective inhibition of the channel mode of the neuronal GABA transporter 1. Molecular Pharmacology, 68, 1728–1735.

    CAS  PubMed  Google Scholar 

  • LaRoche, S. M., & Helmers, S. L. (2004). The new antiepileptic drugs. Journal of the American Medical Association, 291, 605–614.

    Article  CAS  PubMed  Google Scholar 

  • Le Belle, J. E., Harris, N. G., Williams, S. R., & Bhakoo, K. K. (2002). A comparison of cell and tissue extraction techniques using high-resolution 1H NMR spectroscopy. NMR in Biomedicine, 15, 37–44.

    Article  CAS  PubMed  Google Scholar 

  • Lodge, D., Curtis, D. R., & Johnston, G. A. R. (1978). Does uptake limit the action of GABA agonists in vivo? Experiments with muscimol, isoguvacine and THIP in car spinal cord. Journal of Neurochemistry, 31, 1525–1528.

    Article  CAS  PubMed  Google Scholar 

  • Madsen, K. K., Clausen, R. P., Larsson, O. M., Krogsgaard-Larsen, P., Schousboe, A., & Steve White, H. (2008). Synaptic and extrasynaptic GABA transporters as targets for anti-epileptic drugs (pp. 139–144). Beijing: Wiley-Blackwell Publishing, Inc., 2008 Jun 27–Jul 01.

  • Matskevitch, I., Wagner, C. A., Stegen, C., Broer, S., Noll, B., Risler, T., et al. (1999). Functional characterization of the betaine/gamma-aminobutyric acid transporter BGT-1 expressed in Xenopus oocytes. Journal of Biological Chemistry, 274, 16709–16716.

    Article  CAS  PubMed  Google Scholar 

  • McIlwain, H., & Bachelard, H. (1985). Biochemistry and the central nervous system. Edinburgh: Churchill Livingstone.

    Google Scholar 

  • Minelli, A., DeBiasi, S., Brecha, N. C., Zuccarello, L. V., & Conti, F. (1996). GAT-3, a high affinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is not confined to the vicinity of GABAergic synapses in the cerebral cortex. Journal of Neuroscience, 16, 6255–6264.

    CAS  PubMed  Google Scholar 

  • Mody, I. (2001). Distinguishing between GABA(A) receptors responsible for tonic and phasic conductances. Neurochemical Research, 26, 907–913.

    Article  CAS  PubMed  Google Scholar 

  • Möhler, H. (2006). GABAA receptor diversity and pharmacology. Cell and Tissue Research, 326, 505–516.

    Article  PubMed  CAS  Google Scholar 

  • Moussa, C. E.-H., Rae, C., Bubb, W. A., Griffin, J. L., Deters, N. A., & Balcar, V. J. (2007). Inhibitors of glutamate transport modulate distinct patterns in brain metabolism. Journal of Neuroscience Research, 85, 342–350.

    Article  CAS  PubMed  Google Scholar 

  • Nasrallah, F., Griffin, J. L., Balcar, V. J., & Rae, C. (2007). Understanding your inhibitions. Modulation of brain cortical metabolism by GABA-B receptors. Journal of Cerebral Blood Flow and Metabolism, 27, 1510–1520.

    Article  CAS  PubMed  Google Scholar 

  • Overstreet, L. S., & Westbrook, G. L. (2001). Paradoxical reduction of synaptic inhibition by vigabatrin. Journal of Neurophysiology, 86, 596–603.

    CAS  PubMed  Google Scholar 

  • Puia, G., Vicini, S., Seeburg, P. H., & Costa, E. (1991). Influence of recombinant gamma-aminobutyric acid-A receptor subunit composition on the action of allosteric modulators of gamma-aminobutyric acid-gated Cl currents. Molecular Pharmacology, 39, 691–696.

    CAS  PubMed  Google Scholar 

  • Rae, C., Hare, N., Bubb, W. A., McEwan, S. R., Bröer, A., McQuillan, J. A., et al. (2003). Inhibition of glutamine transport depletes glutamate and GABA neurotransmitter pools: Further evidence for metabolic compartmentation. Journal of Neurochemistry, 85, 503–514.

    Article  CAS  PubMed  Google Scholar 

  • Rae, C., Lawrance, M. L., Dias, L. S., Provis, T., Bubb, W. A., & Balcar, V. J. (2000). Strategies for studies of potentially neurotoxic mechanisms involving deficient transport of L-glutamate: Antisense knockout in rat brain in vivo and changes in the neurotransmitter metabolism following inhibition of glutamate transport in guinea pigs brain slices. Brain Research Bulletin, 53, 373–381.

    Article  CAS  PubMed  Google Scholar 

  • Rae, C., Moussa, C. E.-H., Griffin, J. L., Bubb, W. A., Wallis, T., & Balcar, V. J. (2005). Group I and II metabotropic glutamate receptors alter brain cortical metabolic and glutamate/glutamine cycle activity: A 13C NMR spectroscopy and metabolomic study. Journal of Neurochemistry, 92, 405–416.

    Article  CAS  PubMed  Google Scholar 

  • Rae, C., Moussa, C. E.-H., Griffin, J. L., Parekh, S. B., Bubb, W. A., Hunt, N. H., et al. (2006). A metabolomic approach to ionotropic glutamate receptor subtype function: A nuclear magnetic resonance in vitro investigation. Journal of Cerebral Blood Flow and Metabolism, 26, 1005–1017.

    Article  CAS  PubMed  Google Scholar 

  • Rae, C., Nasrallah, F. A., Griffin, J. L., & Balcar, V. J. (2009). Now I know my ABC. A systems neurochemistry and functional metabolomic approach to understanding the GABAergic system. Journal of Neurochemistry, 109(Suppl 1), 109–116.

    Article  CAS  PubMed  Google Scholar 

  • Rogawski, M. A., & Löscher, W. (2004). The neurobiology of antiepileptic drugs. Nature Reviews. Neuroscience, 5, 553–564.

    Article  CAS  PubMed  Google Scholar 

  • Smith, M. D., Saunders, G. W., Clausen, R. P., Frølund, B., Krogsgaard-Larsen, P., Larsson, O. M., et al. (2008). Inhibition of the betaine-GABA transporter (mGAT2/BGT-1) modulates spontaneous electrographic bursting in the medial entorhinal cortex (mEC). Epilepsy Research, 79, 6–13.

    Article  CAS  PubMed  Google Scholar 

  • Stanton, D., Liao, L. P., Moussa, C. E.-H., Rae, C., Bubb, W. A., & Balcar, V. J. (2003). Can inhibition of glutamate transport contribute to the action of neuroleptics? Psychaitrie (Prague), 7, 6–11.

    Google Scholar 

  • Swinyard, E. A., White, H. S., Wolf, H. H., & Bondinell, W. E. (1991). Anticonvulsant profiles of the potent and orally active GABA uptake inhibitors SK and F 89976A and SK and F 100330A and 4 prototype antiepileptic drugs in mice and rats. Epilepsia, 32, 569–577.

    Article  CAS  PubMed  Google Scholar 

  • Tagamets, M. A., & Horwitz, B. (2001). Interpreting PET and fMRI measures of functional neural activity: The effects of synaptic inhibition on cortical activation in human imaging studies. Brain Research Bulletin, 54, 267–273.

    Article  CAS  PubMed  Google Scholar 

  • Tarasenko, A. S., Linetska, M. V., Storchak, L. G., & Himmelreich, N. H. (2006). Effectiveness of extracellular lactate/pyruvate for sustaining synaptic vesicle proton gradient generation and vesicular accumulation of GABA. Journal of Neurochemistry, 99, 787–796.

    Article  CAS  PubMed  Google Scholar 

  • Trevelyan, A. J., Sussillo, D., & Yuste, R. (2007). Feedforward inhibition contributes to the control of epileptiform propagation speed. Journal of Neuroscience, 27, 3383–3387.

    Article  CAS  PubMed  Google Scholar 

  • Wold, S. (1994). Exponentially weighted moving principal components analysis and projections to latent structures. Chemometrics and Intelligent Laboratory Systems., 23, 149–161.

    Article  Google Scholar 

  • Wu, Y., Wang, W. G., & Richerson, G. B. (2001). GABA transaminase inhibition induces spontaneous and enhances depolarization-evoked GABA efflux via reversal of the GABA transporter. Journal of Neuroscience, 21, 2630–2639.

    CAS  PubMed  Google Scholar 

  • Wu, Y., Wang, W., & Richerson, G. B. (2003). Vigabatrin induces tonic inhibition via GABA transporter reversal without increasing vesicular GABA release. Journal of Neurophysiology, 89, 2021–2034.

    Article  CAS  PubMed  Google Scholar 

  • Yasumi, M., Sato, K., Shimada, S., Nishimura, M., & Tohyama, M. (1997). Regional distribution of GABA transporter 1 (GAT1) mRNA in the rat brain: Comparison with glutamic acid decarboxylase(67)(GAD(67))mRNA localization. Molecular Brain Research, 44, 205–218.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, X. M., & Ong, W. Y. (2004). A light and electron microscopic study of betaine/GABA transporter distribution in the monkey cerebral neocortex and hippocampus. Journal of Neurocytology, 33, 233–240.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by UNSW (Goldstar award to CR), NewSouth Global and the Australian National Health and Medical Research Council (grant to CR and VJB). The authors are grateful to Ms. Adelle Shasta, and Dr. Donald Thomas of the UNSW Analytical centre for expert technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Rae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasrallah, F.A., Balcar, V.J. & Rae, C. A metabonomic study of inhibition of GABA uptake in the cerebral cortex. Metabolomics 6, 67–77 (2010). https://doi.org/10.1007/s11306-009-0176-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-009-0176-0

Keywords

Navigation