Skip to main content
Log in

Tribute to Prof. Geoffrey Burnstock: transition of purinergicsignaling to drug discovery

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Geoffrey Burnstock made a chance observation early in his research career that did not fit the conventional scientific dogma—non-noradrenergic, non-cholinergic (NANC) nerves. Instead of rejecting these as an artifact, he followed their logical course to characterize the actions of extracellular ATP on nerves and muscles, eventually founding a large branch of pharmacology around purinergic signaling. The solid proof that validated his concept and dismissed many detractors was the cloning of seven ionotropic P2X receptors and eight metabotropic P2Y receptors, which are expressed in some combination in every tissue and organ. Given the broad importance of this signaling system in biology, medicinal chemists, inspired by Burnstock, began creating synthetic agonists and antagonists for these purinergic receptors. Various ligands have advanced to clinical trials, for disorders of the immune, nervous, cardiovascular, and other systems, and a few are already approved. Thus, medically important approaches have been derived from Burnstock’s original pharmacological concepts and his constant guiding of the course of the field. The therapeutic potential of modulators of purinergic signaling is vast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Burnstock G (2004) Geoffrey Burnstock: most highly cited scientist. Mol Interv 4(4):192–195. https://doi.org/10.1124/mi.4.4.2

    Article  PubMed  Google Scholar 

  2. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    CAS  PubMed  Google Scholar 

  3. Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol 16:433–440

    Article  CAS  PubMed  Google Scholar 

  4. Burnstock G, Campbell G, Satchell D, Smythe A (1970) Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol 40:668–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burnstock G, Kennedy C (1986) A dual function for adenosine 5′-triphosphate in the regulation of vascular tone. Excitatory cotransmitter with noradrenaline from perivascular nerves and locally released inhibitory intravascular agent. Circ Res 58:319–330

    Article  CAS  PubMed  Google Scholar 

  6. Webb TE, Simon J, Krishek BJ, Bateson AN, Smart TG, King BF, Burnstock G, Barnard EA (1993) Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett 324:219–225

    Article  CAS  PubMed  Google Scholar 

  7. Burnstock G (1976) Do some nerve cells release more than one transmitter? Neuroscience 1:239–248

    Article  CAS  PubMed  Google Scholar 

  8. Chen CC, Akopian AN, Sivilottit L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377:428–431

    Article  CAS  PubMed  Google Scholar 

  9. Gever JR, Henningsen RA, Martin RS, Hackos DH, Panicker S, Rubas W, Oglesby IB, Dillon MP, Milla ME, Burnstock G, Ford APDW (2010) AF-353, a novel, potent and orally bioavailable P2X3/P2X2/3 receptor antagonist. Br J Pharmacol 160:1387–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. http://www.histmodbiomed.org/article/professor-geoffrey-burnstock.html. Accessed 10 July 2020

  11. Burnstock N (2000) Prologue. J Autonom Nerv Syst 81(1):1–2. https://www.ucl.ac.uk/ani/Prof/Nomi%27s%20Poem.htm. Accessed 9 July 2020

  12. Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Phamacol Ther 64:445–475

    Article  CAS  Google Scholar 

  13. Lustig KD, Shiau AK, Brake AJ, Julius D (1993) Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc Natl Acad Sci U S A 90:5113–5117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Communi D, Gonzalez NS, Detheux M, Brezillon S, Lannoy V, Parmentier M, Boeynaems JM (2001) Identification of a novel human ADP receptor coupled to Gi. J Biol Chem 44:41479–41485

    Article  Google Scholar 

  15. Fountain SJ (2013) Primitive ATP-activated P2X receptors: discovery, function and pharmacology. Front Cell Neurosci 7, 247. https://doi.org/10.3389/fncel.2013.00247. PMID: 24367292; PMCID: PMC3853471

  16. Pietrowska-Borek M, Dobrogojski J, Sobieszczuk-Nowicka E, Borek S (2020) New insight into plant signaling: extracellular ATP and uncommon nucleotides. Cells 9(2):345. https://doi.org/10.3390/cells9020345

    Article  CAS  PubMed Central  Google Scholar 

  17. Jacobson KA, Müller CE (2016) Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology 104:31–49

    Article  CAS  PubMed  Google Scholar 

  18. da Silva Ferreira NC, Alves LA, Soares-Bezerra RJ (2019) Potential therapeutic applications of P2 receptor antagonists: from bench to clinical trials. Curr Drug Targets 20:919–937

    Article  PubMed  Google Scholar 

  19. Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502. https://doi.org/10.1007/s11302-012-9309-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cusack NJ, Hourani SMO (1982) Specific but noncompetitive inhibition by 2-alkylthio analogues of adenosine 5′-monophosphate and adenosine 5′-triphosphate of human platelet aggregation induced by adenosine 5′-diphosphate. Br J Pharmacol 75:397–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cusack NJ, Hourani SMO (2000) Platelet P2 receptors: from curiosity to clinical targets. J Auton Nerv Syst 81(1):37–43. https://doi.org/10.1016/S0165-1838(00)00151-X

    Article  CAS  PubMed  Google Scholar 

  22. Pelleg A, Schulman ES, Barnes PJ (2018) Adenosine 5′-triphosphate’s role in bradycardia and syncope associated with pulmonary embolism. Respir Res 19(1):142. https://doi.org/10.1186/s12931-018-0848-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pijacka W, Moraes D, Ratcliffe L et al (2016) Purinergic receptors in the carotid body as a new drug target for controlling hypertension. Nat Med 22:1151–1159. https://doi.org/10.1038/nm.4173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burnstock G (2012) Discovery of purinergic signalling, the initial resistance and current explosion of interest. Br J Pharmacol 167(2):238–255. https://doi.org/10.1111/j.1476-5381.2012.02008.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jarvis MF, Burgard EC, McGaraughty S, Honore P, Lynch K, Brennan TJ, Subieta A, Van Biesen T, Cartmell J, Bianchi B, Niforatos W, Kage K, Yu H, Mikusa J, Wismer CT, Zhu CZ, Chu K, Lee CH, Steward AO, Polakowski J, Cox BF, Kowaluk E, Williams M, Sullivan J, Faltynek C (2002) A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci U S A 99:17179–17184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carter DS, Alam M, Cai H, Dillon MP, Ford AP, Gever JR, Jahangir A, Lin C, Moore AG, Wagner PJ, Zhai Y (2009) Identification and SAR of novel diaminopyrimidines. Part 1: the discovery of RO-4, a dual P2X(3)/P2X(2/3) antagonist for the treatment of pain. Bioorg Med Chem Lett 19:1628–1631

    Article  CAS  PubMed  Google Scholar 

  27. Ford AP (2012) In pursuit of P2X3 antagonists: novel therapeutics for chronic pain and afferent sensitization. Purinergic Signal 8:3–26

    Article  CAS  PubMed  Google Scholar 

  28. Morice AH, Kitt MM, Ford AP, Tershakovec AM, Wu W-C, Brindle K, Thompson R, Thackray-Nocera S, Wright C (2019) The effect of gefapixant, a P2X3 antagonist, on cough reflex sensitivity: a randomised placebo-controlled study. Eur Respir J 54:1900439. https://doi.org/10.1183/13993003.00439-2019

    Article  CAS  PubMed  Google Scholar 

  29. Matsumara Y, Yamashita T, Sasaki A, Nakata E, Kohno K, Masuda T, Tozaki-Saitoh H, Imai T, Kuraishi Y, Tsuda M, Inoue K (2016) A novel P2X4 receptor-selective antagonist produces anti-allodynic effect in a mouse model of herpetic pain. Sci Rep 6:32461. https://doi.org/10.1038/srep32461

    Article  CAS  Google Scholar 

  30. North RA, Jarvis MF (2013) P2X receptors as drug targets. Mol Pharmacol 83(4):759–769. https://doi.org/10.1124/mol.112.083758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang R, Beqiri D, Shen JB, Redden J, Dodge-Kafka K, Jacobson KA, Liang BT (2015) P2X4 receptor-eNOS signaling pathway in cardiac myocytes as a novel protective mechanism in heart failure. Comput Struct Biotechnol J 13:1–7

    Article  PubMed  Google Scholar 

  32. Bhattacharya A, Ceusters M (2020) Targeting neuroinflammation with brain penetrant P2X7 antagonists as novel therapeutics for neuropsychiatric disorders. Neuropsychopharmacology 45:234–235. https://doi.org/10.1038/s41386-019-0502-9

    Article  PubMed  Google Scholar 

  33. Bartoli F, Burnstock G, Crocamo C, Carrà G (2020) Purinergic signaling and related biomarkers in depression. Brain Sci 10:160

    Article  CAS  PubMed Central  Google Scholar 

  34. Wong PC, Watson C, Crain EJ (2016) The P2Y1 receptor antagonist MRS2500 prevents carotid artery thrombosis in cynomolgus monkeys. J Thromb Thrombolysis 41:514–521

    Article  CAS  PubMed  Google Scholar 

  35. Reichenbach N, Delekate A, Breithausen B, Keppler K, Poll S, Schulte T, Peter J, Plescher M, Hansen JN, Blank N, Keller A, Fuhrmann M, Henneberger C, Halle A, Petzold GC (2018) P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer’s disease model. J Exp Med 215(6):1649–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Koizumi S, Shigemoto-Mogam Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, Joshi BV, Jacobson KA, Kohsaka S, Inoue K (2007) UDP acting at P2Y6 receptors is a novel mediator of microglial phagocytosis. Nature 446:1091–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anwar S, Pons V, Rivest S (2020) Microglia purinoceptor P2Y6: an emerging therapeutic target in CNS diseases. Cells 9:1595

    Article  CAS  PubMed Central  Google Scholar 

  38. Girard M, Dagenais Bellefeuille S, Eiselt É, Brouillette R, Placet M, Arguin G, Longpré JM, Sarret P, Gendron FP (2020) The P2Y6 receptor signals through Gαq/Ca2+/PKCα and Gα13/ROCK pathways to drive the formation of membrane protrusions and dictate cell migration. J Cell Physiol 2020:1–15. https://doi.org/10.1002/jcp.29779

    Article  CAS  Google Scholar 

  39. Haydon PG, Lee J (2014) Uridine nucleoside derivatives, compositions and methods of use. PCT Int. Appl. WO 2014160502 A1 20141002

  40. Jun I, Choi S, Lee GY, Choi YJ, Lee HK, Kim EK, Seo KY, Kim T-I (2019) Effects of preservative-free 3% diquafosol in patients with pre-existing dry eye disease after cataract surgery: a randomized clinical trial. Sci Rep 9:12659. https://doi.org/10.1038/s41598-019-49159-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sesma JI, Weitzer CD, Livraghi-Butrico A, Dang H, Donaldson S, Alexis NE, Jacobson KA, Harden TK, Lazarowski ER (2016) UDP-glucose promotes neutrophil recruitment in the lung. Purinergic Signal 12(4):627–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mufti F, Jung YH, Giancotti LA, Yu J, Chen Z, Phung NB, Jacobson KA, Salvemini D (2020) P2Y14 receptor antagonists reverse chronic neuropathic pain in a mouse model. ACS Med Chem Lett 11:1281–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Battistone MA, Mendelsohn AC, Spallanzani RG, Allegretti AS, Liberman RN, Sesma J, Kalim S, Wall SM, Bonventre JV, Lazarowski ER, Brown D, Breton S (2020) Pro-inflammatory P2Y14 receptor inhibition protects against ischemic acute kidney injury in mice. J Clin Invest 130:3734–3749. https://doi.org/10.1172/JCI134791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets--what are the challenges? Nat Rev Drug Discov 12(4):265–286. https://doi.org/10.1038/nrd3955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dwyer KM, Kishore BK, Robson SC (2020) Conversion of extracellular ATP into adenosine: a master switch in renal health and disease. Nat Rev Nephrol. https://doi.org/10.1038/s41581-020-0304-7

  46. Jacobson KA, Tosh DK, Jain S, Gao ZG (2019) Historical and current adenosine receptor agonists in preclinical and clinical development. Front Cell Neurosci 13:124. https://doi.org/10.3389/fncel.2019.00124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen JF, Cunha R (2020) The belated US FDA approval of the adenosine A2A receptor antagonist istradefylline for treatment of Parkinson’s disease. Purinergic Signal. https://doi.org/10.1007/s11302-020-09694-2

  48. Sitkovsky MV (2020) Lessons from the A2A adenosine receptor antagonist–enabled tumor regression and survival in patients with treatment-refractory renal cell cancer. Cancer Disc 10(1):16–19. https://doi.org/10.1158/2159-8290.CD-19-1280

    Article  CAS  Google Scholar 

  49. Fishman P, Bar-Yehuda S, Liang BT, Jacobson KA (2012) Pharmacological and therapeutic effects of A3 adenosine receptor (A3AR) agonists. Drug Discov Today 17:359–366

    Article  CAS  PubMed  Google Scholar 

  50. Doyle TM, Largent-Milnes TM, Chen Z, Staikopoulos V, Esposito E, Dalgarno R, Fan C, Tosh DK, Cuzzocrea S, Jacobson KA, Trang T, Hutchinson MR, Bennett GJ, Vanderah TW, Salvemini D (2020) Chronic morphine-induced changes in signaling at the A3 adenosine receptor contribute to morphine-induced hyperalgesia, tolerance and withdrawal. J Pharmacol Exp Ther, in press, http://jpet.aspetjournals.org/content/early/2020/05/18/jpet.120.000004 374:331–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Congreve M, Brown GA, Borodovsky A, Lamb ML (2018) Targeting adenosine A2A receptor antagonism for treatment of cancer. Expert Opin Drug Discovery 13:997–1003

    Article  CAS  Google Scholar 

  52. Zhang D, Gao ZG, Zhang K, Kiselev E, Crane S, Wang J, Paoletta S, Yi C, Ma L, Zhang W, Han GW, Liu H, Cherezov V, Katritch V, Jiang H, Stevens RC, Jacobson KA, Zhao Q, Wu B (2015) Two disparate ligand-binding sites in the human P2Y1 receptor. Nature 520:317–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Salmaso V, Jacobson KA (2020) In silico drug design for purinergic GPCRs: overview on molecular dynamics applied to adenosine and P2Y receptors. Biomolecules 10:812. https://doi.org/10.3390/biom10060812

    Article  CAS  PubMed Central  Google Scholar 

  54. Mansoor SE, Lü W, Oosterheert W, Shekhar M, Tajkhorshid E, Gouaux E (2016) X-ray structures define human P2X(3) receptor gating cycle and antagonist action. Nature 538:66–71. https://doi.org/10.1038/nature19367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Habermacher C, Dunning K, Chataigneau T, Grutter T (2016) Molecular structure and function of P2X receptors. Neuropharmacology 104:18–30

    Article  CAS  PubMed  Google Scholar 

  56. Pasqualetto G, Brancale A, Young MT (2018) The molecular determinants of small-molecule ligand binding at P2X receptors. Front Pharmacol 9:58. https://doi.org/10.3389/fphar.2018.00058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This article received funding from the NIDDK Intramural Research Program (ZIADK311117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Jacobson.

Ethics declarations

Conflicts of interest

Kenneth A. Jacobson declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on A Tribute to Professor Geoff Burnstock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobson, K.A. Tribute to Prof. Geoffrey Burnstock: transition of purinergicsignaling to drug discovery. Purinergic Signalling 17, 3–8 (2021). https://doi.org/10.1007/s11302-020-09717-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-020-09717-y

Keywords

Navigation