Skip to main content
Log in

Role of adenosine A2B receptor signaling in contribution of cardiac mesenchymal stem-like cells to myocardial scar formation

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Adenosine levels increase in ischemic hearts and contribute to the modulation of that pathological environment. We previously showed that A2B adenosine receptors on mouse cardiac Sca1+CD31 mesenchymal stromal cells upregulate secretion of paracrine factors that may contribute to the improvement in cardiac recovery seen when these cells are transplanted in infarcted hearts. In this study, we tested the hypothesis that A2B receptor signaling regulates the transition of Sca1+CD31 cells, which occurs after myocardial injury, into a myofibroblast phenotype that promotes myocardial repair and remodeling. In vitro, TGFβ1 induced the expression of the myofibroblast marker α-smooth muscle actin (αSMA) and increased collagen I generation in Sca1+CD31 cells. Stimulation of A2B receptors attenuated TGFβ1-induced collagen I secretion but had no effect on αSMA expression. In vivo, myocardial infarction resulted in a rapid increase in the numbers of αSMA-positive cardiac stromal cells by day 5 followed by a gradual decline. Genetic deletion of A2B receptors had no effect on the initial accumulation of αSMA-expressing stromal cells but hastened their subsequent decline; the numbers of αSMA-positive cells including Sca1+CD31 cells remained significantly higher in wild type compared with A2B knockout hearts. Thus, our study revealed a significant contribution of cardiac Sca1+CD31 cells to the accumulation of αSMA-expressing cells after infarction and implicated A2B receptor signaling in regulation of myocardial repair and remodeling by delaying deactivation of these cells. It is plausible that this phenomenon may contribute to the beneficial effects of transplantation of these cells to the injured heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig 6

Similar content being viewed by others

References

  1. Rossini A, Frati C, Lagrasta C, Graiani G, Scopece A, Cavalli S, Musso E, Baccarin M, Di SM, Fagnoni F, Germani A, Quaini E, Mayr M, Xu Q, Barbuti A, DiFrancesco D, Pompilio G, Quaini F, Gaetano C, Capogrossi MC (2011) Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovasc Res 89:650–660

    Article  CAS  PubMed  Google Scholar 

  2. Li TS, Cheng K, Malliaras K, Smith RR, Zhang Y, Sun B, Matsushita N, Blusztajn A, Terrovitis J, Kusuoka H, Marban L, Marban E (2012) Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J Am Coll Cardiol 59:942–953

    Article  PubMed Central  PubMed  Google Scholar 

  3. Huang C, Gu H, Yu Q, Manukyan MC, Poynter JA, Wang M (2011) Sca-1+ cardiac stem cells mediate acute cardioprotection via paracrine factor SDF-1 following myocardial ischemia/reperfusion. PLoS One 6:e29246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, Sano M, Toko H, Akazawa H, Sato T, Nakaya H, Kasanuki H, Komuro I (2004) Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 279:11384–11391

    Article  CAS  PubMed  Google Scholar 

  5. Pfister O, Mouquet F, Jain M, Summer R, Helmes M, Fine A, Colucci WS, Liao R (2005) CD31 but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97:52–61

    Article  CAS  PubMed  Google Scholar 

  6. Wang X, Hu Q, Nakamura Y, Lee J, Zhang G, From AH, Zhang J (2006) The role of the sca-1+/CD31 cardiac progenitor cell population in postinfarction left ventricular remodeling. Stem Cells 24:1779–1788

    Article  PubMed  Google Scholar 

  7. Mohri T, Fujio Y, Obana M, Iwakura T, Matsuda K, Maeda M, Azuma J (2009) Signals through glycoprotein 130 regulate the endothelial differentiation of cardiac stem cells. Arterioscler Thromb Vasc Biol 29:754–760

    Article  CAS  PubMed  Google Scholar 

  8. Liang SX, Tan TY, Gaudry L, Chong B (2010) Differentiation and migration of Sca1+/CD31 cardiac side population cells in a murine myocardial ischemic model. Int J Cardiol 138:40–49

    Article  PubMed  Google Scholar 

  9. Matsuura K, Honda A, Nagai T, Fukushima N, Iwanaga K, Tokunaga M, Shimizu T, Okano T, Kasanuki H, Hagiwara N, Komuro I (2009) Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J Clin Invest 119:2204–2217

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Ryzhov S, Goldstein AE, Novitskiy SV, Blackburn MR, Biaggioni I, Feoktistov I (2012) Role of A2B adenosine receptors in regulation of paracrine functions of stem cell antigen 1-positive cardiac stromal cells. J Pharmacol Exp Ther 341:764–774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ryzhov S, Zhang Q, Biaggioni I, Feoktistov I (2013) Adenosine A2B receptors on cardiac stem cell antigen (Sca)-1-positive stromal cells play a protective role in myocardial infarction. Am J Pathol 183:665–672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Tateishi K, Ashihara E, Takehara N, Nomura T, Honsho S, Nakagami T, Morikawa S, Takahashi T, Ueyama T, Matsubara H, Oh H (2007) Clonally amplified cardiac stem cells are regulated by Sca-1 signaling for efficient cardiovascular regeneration. J Cell Sci 120:1791–1800

    Article  CAS  PubMed  Google Scholar 

  13. Takamiya M, Haider KH, Ashraf M (2011) Identification and characterization of a novel multipotent sub-population of Sca-1+ cardiac progenitor cells for myocardial regeneration. PLoS One 6:e25265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Martin BJ, McClanahan TB, Van Wylen DG, Gallagher KP (1997) Effects of ischemia, preconditioning, and adenosine deaminase inhibition on interstitial adenosine levels and infarct size. Basic Res Cardiol 92:240–251

    Article  CAS  PubMed  Google Scholar 

  15. Willems L, Reichelt ME, Molina JG, Sun CX, Chunn JL, Ashton KJ, Schnermann J, Blackburn MR, Headrick JP (2006) Effects of adenosine deaminase and A1 receptor deficiency in normoxic and ischaemic mouse hearts. Cardiovasc Res 71:79–87

    Article  CAS  PubMed  Google Scholar 

  16. Fredholm BB (2007) Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 14:1315–1323

    Article  CAS  PubMed  Google Scholar 

  17. Gharibi B, Abraham AA, Ham J, Evans BA (2012) Contrasting effects of A1 and A2b adenosine receptors on adipogenesis. Int J Obes (Lond) 36:397–406

    Article  CAS  Google Scholar 

  18. Gharibi B, Abraham AA, Ham J, Evans BA (2011) Adenosine receptor subtype expression and activation influence the differentiation of mesenchymal stem cells to osteoblasts and adipocytes. J Bone Miner Res 26:2112–2124

    Article  CAS  PubMed  Google Scholar 

  19. Ham J, Evans BA (2012) An emerging role for adenosine and its receptors in bone homeostasis. Front Endocrinol (Lausanne) 3:113

    Google Scholar 

  20. Carroll SH, Wigner NA, Kulkarni N, Johnston-Cox H, Gerstenfeld LC, Ravid K (2012) A2B adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. J Biol Chem 287:15718–15727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ciciarello M, Zini R, Rossi L, Salvestrini V, Ferrari D, Manfredini R, Lemoli RM (2013) Extracellular purines promote the differentiation of human bone marrow-derived mesenchymal stem cells to the osteogenic and adipogenic lineages. Stem Cells Dev 22:1097–1111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. He W, Mazumder A, Wilder T, Cronstein BN (2013) Adenosine regulates bone metabolism via A1, A2A, and A2B receptors in bone marrow cells from normal humans and patients with multiple myeloma. FASEB J 27:3446–3454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Carlson S, Trial J, Soeller C, Entman ML (2011) Cardiac mesenchymal stem cells contribute to scar formation after myocardial infarction. Cardiovasc Res 91:99–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Cieslik KA, Trial J, Entman ML (2011) Defective myofibroblast formation from mesenchymal stem cells in the aging murine heart rescue by activation of the AMPK pathway. Am J Pathol 179:1792–1806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Cieslik KA, Trial J, Carlson S, Taffet GE, Entman ML (2013) Aberrant differentiation of fibroblast progenitors contributes to fibrosis in the aged murine heart: role of elevated circulating insulin levels. FASEB J 27:1761–1771

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J (2010) Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol 7:30–37

    Article  PubMed  Google Scholar 

  27. Stefanovic B, Schnabl B, Brenner DA (2002) Inhibition of collagen alpha 1(I) expression by the 5’ stem-loop as a molecular decoy. J Biol Chem 277:18229–18237

    Article  CAS  PubMed  Google Scholar 

  28. Dubey RK, Gillespie DG, Mi Z, Jackson EK (1997) Exogenous and endogenous adenosine inhibits fetal calf serum-induced growth of rat cardiac fibroblasts: role of A2B receptors. Circulation 96:2656–2666

    Article  CAS  PubMed  Google Scholar 

  29. Dubey RK, Gillespie DG, Jackson EK (1998) Adenosine inhibits collagen and protein synthesis in cardiac fibroblasts: role of A2B receptors. Hypertension 31:943–948

    Article  CAS  PubMed  Google Scholar 

  30. Chen Y, Epperson S, Makhsudova L, Ito B, Suarez J, Dillmann W, Villarreal F (2004) Functional effects of enhancing or silencing adenosine A2b receptors in cardiac fibroblasts. Am J Physiol 287:H2478–H2486

    CAS  Google Scholar 

  31. Epperson SA, Brunton LL, Ramirez-Sanchez I, Villarreal F (2009) Adenosine receptors and second messenger signaling pathways in rat cardiac fibroblasts. Am J Physiol Cell Physiol 296:C1171–C1177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Villarreal F, Epperson SA, Ramirez-Sanchez I, Yamazaki KG, Brunton LL (2009) Regulation of cardiac fibroblast collagen synthesis by adenosine: roles for Epac and PI3K. Am J Physiol 296:C1178–C1184

    Article  CAS  Google Scholar 

  33. Zhong H, Belardinelli L, Zeng D (2011) Pro-fibrotic role of the A2B adenosine receptor in human cardiac fibroblasts. J Card Fail 17:S65

    Article  Google Scholar 

  34. Desmouliere A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146:56–66

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Hecker L, Jagirdar R, Jin T, Thannickal VJ (2011) Reversible differentiation of myofibroblasts by MyoD. Exp Cell Res 317:1914–1921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kisseleva T, Cong M, Paik Y, Scholten D, Jiang C, Benner C, Iwaisako K, Moore-Morris T, Scott B, Tsukamoto H, Evans SM, Dillmann W, Glass CK, Brenner DA (2012) Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A 109:9448–9453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Garrison G, Huang SK, Okunishi K, Scott JP, Kumar Penke LR, Scruggs AM, Peters-Golden M (2013) Reversal of myofibroblast differentiation by prostaglandin E2. Am J Respir Cell Mol Biol 48:550–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Wakeno M, Minamino T, Seguchi O, Okazaki H, Tsukamoto O, Okada K, Hirata A, Fujita M, Asanuma H, Kim J, Komamura K, Takashima S, Mochizuki N, Kitakaze M (2006) Long-term stimulation of adenosine A2b receptors begun after myocardial infarction prevents cardiac remodeling in rats. Circulation 114:1923–1932

    Article  CAS  PubMed  Google Scholar 

  39. Toldo S, Zhong H, Mezzaroma E, Van TB, Kannan H, Zeng D, Belardinelli L, Voelkel N, Abbate A (2012) GS-6201, a selective blocker of the A2B adenosine receptor, attenuates cardiac remodeling following acute myocardial infarction in the mouse. J Pharmacol Exp Ther 343:587–595

    Article  CAS  PubMed  Google Scholar 

  40. Maas JE, Koupenova M, Ravid K, Auchampach JA (2008) The A2B adenosine receptor contributes to post-infarction heart failure. Circulation 118:S946

    Google Scholar 

  41. Zhang H, Zhong H, Everett TH, Wilson E, Chang R, Zeng D, Belardinelli L, Olgin JE (2014) Blockade of A2B adenosine receptor reduces left ventricular dysfunction and ventricular arrhythmias 1 week after myocardial infarction in the rat model. Heart Rhythm 11:101–109

    Article  PubMed  Google Scholar 

  42. Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, Blackburn MR, Biaggioni I, Carbone DP, Feoktistov I, Dikov MM (2008) Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 112:1822–1831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ryzhov S, Zaynagetdinov R, Goldstein AE, Novitskiy SV, Blackburn MR, Biaggioni I, Feoktistov I (2008) Effect of A2B adenosine receptor gene ablation on adenosine-dependent regulation of proinflammatory cytokines. J Pharmacol Exp Ther 324:694–700

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health National Heart, Lung and Blood Institute [grant R01HL095787 and K08HL094703], National Cancer Institute [grant R01CA138923], American Heart Association Research Grant-in-Aid [13GRNT16580020], and Vanderbilt Clinical and Translational Science Award (CSTA) [grant UL1 RR024975-01] from the National Institutes of Health National Center for Research Resources (Vanderbilt Institute for Clinical and Translational Research CTSA grant VR5622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Feoktistov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 924 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryzhov, S., Sung, B.H., Zhang, Q. et al. Role of adenosine A2B receptor signaling in contribution of cardiac mesenchymal stem-like cells to myocardial scar formation. Purinergic Signalling 10, 477–486 (2014). https://doi.org/10.1007/s11302-014-9410-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-014-9410-y

Keywords

Navigation