Skip to main content
Log in

Modulation of Ca2+-currents by sequential and simultaneous activation of adenosine A1 and A2A receptors in striatal projection neurons

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

D1- and D2-types of dopamine receptors are located separately in direct and indirect pathway striatal projection neurons (dSPNs and iSPNs). In comparison, adenosine A1-type receptors are located in both neuron classes, and adenosine A2A-type receptors show a preferential expression in iSPNs. Due to their importance for neuronal excitability, Ca2+-currents have been used as final effectors to see the function of signaling cascades associated with different G protein-coupled receptors. For example, among many other actions, D1-type receptors increase, while D2-type receptors decrease neuronal excitability by either enhancing or reducing, respectively, CaV1 Ca2+-currents. These actions occur separately in dSPNs and iSPNs. In the case of purinergic signaling, the actions of A1- and A2A-receptors have not been compared observing their actions on Ca2+-channels of SPNs as final effectors. Our hypotheses are that modulation of Ca2+-currents by A1-receptors occurs in both dSPNs and iSPNs. In contrast, iSPNs would exhibit modulation by both A1- and A2A-receptors. We demonstrate that A1-type receptors reduced Ca2+-currents in all SPNs tested. However, A2A-type receptors enhanced Ca2+-currents only in half tested neurons. Intriguingly, to observe the actions of A2A-type receptors, occupation of A1-type receptors had to occur first. However, A1-receptors decreased CaV2 Ca2+-currents, while A2A-type receptors enhanced current through CaV1 channels. Because these channels have opposing actions on cell discharge, these differences explain in part why iSPNs may be more excitable than dSPNs. It is demonstrated that intrinsic voltage-gated currents expressed in SPNs are effectors of purinergic signaling that therefore play a role in excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. DeLong M, Wichmann T (2009) Update on models of basal ganglia function and dysfunction. Parkinsonism Relat Disord 3:S237–S240

    Article  Google Scholar 

  2. Smith AD, Bolam JP (1990) The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurons. Trends Neurosci 13:259–265

    Article  CAS  PubMed  Google Scholar 

  3. Kravitz AV, Freeze BS, Parker PR et al (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Vilchis C, Bargas J, Ayala GX, Galván E, Galarraga E (2000) Ca2+ channels that activate Ca2+-dependent K+ currents in neostriatal neurons. Neuroscience 95:745–752

    Article  CAS  PubMed  Google Scholar 

  5. Perez-Garci E, Bargas J, Galarraga E (2003) The role of Ca2+ channels in the repetitive firing of striatal projection neurons. Neuroreport 14:1253–1256

    Article  CAS  PubMed  Google Scholar 

  6. Perez-Burgos A, Perez-Rosello T, Salgado H et al (2008) Muscarinic M(1) modulation of N and L types of calcium channels is mediated by protein kinase C in neostriatal neurons. Neuroscience 155:1079–1097

    Article  CAS  PubMed  Google Scholar 

  7. Tritsch NX, Sabatini BL (2012) Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76:33–50

    Article  CAS  PubMed  Google Scholar 

  8. Hernandez-López S, Bargas J, Surmeier DJ, Reyes A, Galarraga E (1997) D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J Neurosci 17:3334–3342

    PubMed  Google Scholar 

  9. Hernandez-López S, Tkatch T, Perez-Garci E, Galarraga E, Bargas J, Hamm H, Surmeier DJ (2000) D2 dopamine receptors in striatal medium spiny neurons reduce L-Type Ca2+ currents and excitability vía a novel PLCβ1–IP3–calcineurin-signaling cascade. J Neurosci 20:8987–8995

    PubMed  Google Scholar 

  10. Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Svenningsson P, Le Moine C, Fisone G, Fredholm BB (1999) Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol 59:355–396

    Article  CAS  PubMed  Google Scholar 

  12. Yabuuchi K, Kuroiwa M, Shuto T et al (2006) Role of adenosine A1 receptors in the modulation of dopamine D1 and adenosine A2A receptor signaling in the neostriatum. Neuroscience 141:19–25

    Article  CAS  PubMed  Google Scholar 

  13. Moreau JL, Huber G (1999) Central adenosine A(2A) receptors: an overview. Brain Res Rev 31:65–82

    Article  CAS  PubMed  Google Scholar 

  14. Linden J (1991) Structure and function of A1 adenosine receptors. FASEB J 5:2668–2676

    CAS  PubMed  Google Scholar 

  15. Noguchi J, Yamashita H (2000) Adenosine inhibits voltage-dependent Ca2+ currents in rat dissociated supraoptic neurones via A1 receptors. J Physiol 526:313–326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Song WJ, Tkatch T, Surmeier DJ (2000) Adenosine receptor expression and modulation of Ca(2+) channels in rat striatal cholinergic interneurons. J Neurophysiol 83:322–332

    CAS  PubMed  Google Scholar 

  17. McCool BA, Farroni JS (2001) A1 adenosine receptors inhibit multiple voltage-gated Ca2+ channel subtypes in acutely isolated rat basolateral amygdala neurons. Br J Pharmacol 132:879–888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Park KS, Jeong SW, Cha SK et al (2001) Modulation of N-type Ca2+ currents by A1-adenosine receptor activation in male rat pelvic ganglion neurons. J Pharmacol Exp Ther 299:501–508

    CAS  PubMed  Google Scholar 

  19. Mogul DJ, Adams ME, Fox AP (1993) Differential activation of adenosine receptors decreases N-type but potentiates P-type Ca2+ current in hippocampal CA3 neurons. Neuron 10:327–334

    Article  CAS  PubMed  Google Scholar 

  20. Zhu Y, Ikeda SR (1993) Adenosine modulates voltage-gated Ca2+ channels in adult rat sympathetic neurons. J Neurophysiol 70:610–620

    CAS  PubMed  Google Scholar 

  21. Umemiya M, Berger AJ (1994) Activation of adenosine A1 and A2 receptors differentially modulates calcium channels and glycinergic synaptic transmission in rat brainstem. Neuron 13:1439–1446

    Article  CAS  PubMed  Google Scholar 

  22. Haas HL, Selbach O (2000) Functions of neuronal adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol 362:375–381

    Article  CAS  PubMed  Google Scholar 

  23. Ponzio TA, Hatton GI (2005) Adenosine postsynaptically modulates supraoptic neuronal excitability. J Neurophysiol 93:535–547

    Article  CAS  PubMed  Google Scholar 

  24. Fredholm BB, Abbracchio MP, Burnstock G et al (1994) Nomenclature and classification of purinoreceptors. Pharmacol Rev 46:143–156

    CAS  PubMed  Google Scholar 

  25. Palmer TM, Stiles GL (1995) Adenosine receptors. Neuropharmacology 34:683–694

    Article  CAS  PubMed  Google Scholar 

  26. Kull B, Svenningsson P, Fredholm BB (2000) Adenosine A2A receptors are colocalized with and activate Golf in rat striatum. Mol Pharmacol 58:771–777

    CAS  PubMed  Google Scholar 

  27. Corvol JC, Studler JM, Schonn JS, Girault JA, Hervé D (2001) Galpha(olf) is necessary for coupling D1 and A2A receptors to adenylyl cyclase in the striatum. J Neurochem 76:1585–1588

    Article  CAS  PubMed  Google Scholar 

  28. Herve D, Le Moine C, Corvol JC et al (2001) G(olf) levels are regulated by receptor usage and control dopamine and adenosine action in the striatum. J Neurosci 21:4390–4399

    CAS  PubMed  Google Scholar 

  29. Jenner P, Mori A, Hauser R, Morelli M, Fredholm BB, Chen JF (2009) Adenosine, adenosine A2A antagonists, and Parkinson’s disease. Parkinsonism Relat Disord 15:406–413

    Article  CAS  PubMed  Google Scholar 

  30. Okada Y, Sakurai T, Mori M (1992) Excitatory effects of adenosine on neurotransmission is due to increase of transmitter release in the hippocampal slices. Neurosci Lett 142:233–236

    Article  CAS  PubMed  Google Scholar 

  31. Azdad K, Gall D, Woods AS, Ledent C, Ferré S, Schiffmann SN (2009) Dopamine D2 and adenosine A2A receptors regulate NMDA-mediated excitation in accumbens neurons through A2A-D2 receptor heteromerization. Neuropsychopharmacol 34:972–986

    Article  CAS  Google Scholar 

  32. Dixon AK, Widdowson L, Richardson PJ (1997) Desensitisation of the adenosine A1 receptor by the A2A receptor in the rat striatum. J Neurochem 69:315–321

    Article  CAS  PubMed  Google Scholar 

  33. Higley MJ, Sabatini BL (2010) Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat Neurosci 13(8):958–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Peterson JD, Goldberg JA, Surmeier DJ (2012) Adenosine A2A receptor antagonists attenuate striatal adaptations following dopamine depletion. Neurobiol Dis 45:409–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Nörenberg W, Wirkner K, Assmann H, Richter M, Illes P (1998) Adenosine A2A receptors inhibit the conductance of NMDA receptor channels in rat neostriatal neurons. Amino Acids 14:33–39

    Article  PubMed  Google Scholar 

  36. Lopes LV, Cunha AR, Ribeiro JÁ (1999) Cross talk between A(1) and A(2A) adenosine receptors in the hippocampus and cortex of young adult and old rats. J Neurophysiol 82:3196–3203

    CAS  PubMed  Google Scholar 

  37. Lopes LV, Cunha RA, Kull B, Fredholm BB, Ribeiro JÁ (2002) Adenosine A(2A) receptor facilitation of hippocampal synaptic transmission is dependent on tonic A(1) receptor inhibition. Neurosci 112:319–329

    Article  CAS  Google Scholar 

  38. Prieto GA, Perez-Burgos A, Fiordelisio T et al (2009) Dopamine D(2)-class receptor supersensitivity as reflected in Ca2+ current modulation in neostriatal neurons. Neurosci 164:345–350

    Article  CAS  Google Scholar 

  39. Yan Z, Surmeier DJ (1996) Muscarinic (m2/m4) receptors reduce N- and P-type Ca2+ currents in rat neostriatal cholinergic interneurons through a fast, membrane-delimited, G protein pathway. J Neurosci 16:2592–2604

    CAS  PubMed  Google Scholar 

  40. Bargas J, Howe A, Eberwine J, Cao Y, Surmeier DJ (1994) Cellular and molecular characterization of Ca2+ currents in acutely isolated, adult rat neostriatal neurons. J Neurosci 14:6667–6686

    CAS  PubMed  Google Scholar 

  41. Perez-Rosello T, Figueroa A, Salgado H et al (2005) Cholinergic control of firing pattern and neurotransmission in rat neostriatal projection neurons: role of CaV2.1 and CaV2.2 Ca2+ channels. J Neurophysiol 93:2507–2519

    Article  CAS  PubMed  Google Scholar 

  42. Salgado H, Tecuapetla F, Perez-Rosello T et al (2005) A reconfiguration of CaV2 Ca2+ channel current and its dopaminergic D2 modulation in developing neostriatal neurons. J Neurophysiol 94:3771–3787

    Article  CAS  PubMed  Google Scholar 

  43. Sebastião AM, Macedo MP, Ribeiro JÁ (2000) Tonic activation of A(2A) adenosine receptors unmasks, and of A(1) receptors prevents, a facilitatory action of calcitonin gene-related peptide in the rat hippocampus. Br J Pharmacol 129:374–380

    Article  PubMed Central  PubMed  Google Scholar 

  44. Cunha-Reis D, Fontinha BM, Ribeiro JA, Sebastião AM (2007) Tonic adenosine A1 and A2A receptor activation is required for the excitatory action of VIP on synaptic transmission in the CA1 area of the hippocampus. Neuropharmacol 52:313–320

    Article  CAS  Google Scholar 

  45. Cunha-Reis D, Ribeiro JA, Sebastião AM (2008) A1 and A2A receptor activation by endogenous adenosine is required for VIP enhancement of K+-evoked (3H)-GABA release from rat hippocampal nerve terminals. Neurosci Lett 430:207–212

    Article  CAS  PubMed  Google Scholar 

  46. Ciruela F, Casadó V, Rodrigues RJ et al (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 26:2080–2087

    Article  CAS  PubMed  Google Scholar 

  47. Vivas O, Arenas I, García DE (2012) Voltage-independent inhibition of Ca(V)2.2 channels is delimited to a specific region of the membrane potential in rat SCG neurons. Acta Biochim Biophys Sin (Shanghai) 44:544–549

    Article  CAS  Google Scholar 

  48. Martella G, Spadoni F, Sciamanna G, Tassone A, Bernardi G, Pisani A, Bonsi P (2008) Age-related functional changes of high-voltage-activated calcium channels in different neuronal subtypes of mouse striatum. Neurosci 152:469–476

    Article  CAS  Google Scholar 

  49. Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferré S (2007) Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol 83:277–292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Hagberg H, Andersson P, Lacarewicz J, Jacobson I, Butcher S, Sandberg M (1987) Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia. J Neurochem 49:227–231

    Article  CAS  PubMed  Google Scholar 

  51. Pazzagli M, Corsi C, Fratti S, Pedata F, Pepeu G (1995) Regulation of extracellular adenosine levels in the striatum of aging rats. Brain Res 684:103–106

    Article  CAS  PubMed  Google Scholar 

  52. Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484

    Article  CAS  PubMed  Google Scholar 

  53. Pedata F, Corsi C, Melani A, Bordoni F, Latini S (2001) Adenosine extracellular brain concentrations and role of A2A receptors in ischemia. Ann N Y Acad Sci 939:74–84

    Article  CAS  PubMed  Google Scholar 

  54. Pinna A, Corsi C, Carta AR, Valentini V, Pedata F, Morelli M (2002) Modification of adenosine extracellular levels and adenosine A(2A) receptor mRNA by dopamine denervation. Eur J Pharmacol 446:75–82

    Article  CAS  PubMed  Google Scholar 

  55. Gianfriddo M, Melani A, Turchi D, Giovannini MG, Pedata F (2004) Adenosine and glutamate extracellular concentrations and mitogen-activated protein kinases in the striatum of Huntington transgenic mice. Selective antagonism of adenosine A2A receptors reduces transmitter outflow. Neurobiol Dis 17:77–88

    Article  CAS  PubMed  Google Scholar 

  56. Sciotti VM, Park TS, Berne RM, Van Wylen DG (1993) Changes in extracellular adenosine during chemical or electrical brain stimulation. Brain Res 613:16–20

    Article  CAS  PubMed  Google Scholar 

  57. Chechova S, Venton BJ (2008) Transient adenosine efflux in the rat caudate-putamen. J Neurochem 105:1253–1263

    Article  Google Scholar 

  58. Cunha RA, Vizi ES, Ribeiro JA, Sebastião AM (1996) Preferential release of ATP and its extracellular catabolism as a source of adenosine upon high- but not low-frequency stimulation of rat hippocampal slices. J Neurochem 67:2180–2187

    Article  CAS  PubMed  Google Scholar 

  59. Gonçalves J, Queiroz G (1993) Facilitatory and inhibitory modulation by endogenous adenosine of noradrenaline release in the epididymal portion of rat vas deferens. Naunyn Schmiedebergs Arch Pharmacol 348:367–371

    Article  PubMed  Google Scholar 

  60. Correia-de-Sá P, Timóteo MA, Ribeiro JÁ (1996) Presynaptic A1 inhibitory/A2A facilitatory adenosine receptor activation balance depends on motor nerve stimulation paradigm at the rat hemidiaphragm. J Neurophysiol 76:3910–3919

    PubMed  Google Scholar 

  61. Correia-de-Sá P, Ribeiro JÁ (1996) Adenosine uptake and deamination regulate tonic A2A receptor facilitation of evoked (3H)acetylcholine release from the rat motor nerve terminals. Neuroscience 73:85–92

    Article  PubMed  Google Scholar 

  62. Latini S, Pazzali M, Pepeu G, Pedata F (1996) A2 adenosine receptors: their presence and neuromodulatory role in the central nervous system. Gen Pharmacol 27:925–933

    Article  CAS  PubMed  Google Scholar 

  63. Salmi P, Chergui K, Fredholm BB (2005) Adenosine-dopamine interactions revealed in knockout mice. J Mol Neurosci 26:239–244

    Article  CAS  PubMed  Google Scholar 

  64. Fuxe K, Ferré S, Genedani S, Franco R, Agnati LF (2007) Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol Behav 92:210–217

    Article  CAS  PubMed  Google Scholar 

  65. Ribeiro JA (1999) Adenosine A2A receptor interactions with receptors for other neurotransmitters and neuromodulators. Eur J Pharmacol 375:101–113

    Article  CAS  PubMed  Google Scholar 

  66. Duarte-Araújo M, Nascimento C, Alexandrina Timóteo M, Magalhães-Cardoso T, Correia-de-Sá P (2004) Dual effects of adenosine on acetylcholine release from myenteric motoneurons are mediated by junctional facilitatory A(2A) and extrajunctional inhibitory A(1) receptors. Br J Pharmacol 141:925–934

    Article  PubMed Central  PubMed  Google Scholar 

  67. Mynlieff M, Beam KG (1994) Adenosine acting at an A1 receptor decreases N-type calcium current in mouse motoneurons. J Neurosci 14:3628–3634

    CAS  PubMed  Google Scholar 

  68. Budd DC, Nicholls DG (1995) Protein kinase C-mediated suppression of the presynaptic adenosine A1 receptor by a facilitatory metabotropic glutamate receptor. J Neurochem 65:615–621

    Article  CAS  PubMed  Google Scholar 

  69. Ambrósio AF, Malva JO, Carvalho AP, Carvalho CM (1996) Modulation of Ca2+ channels by activation of adenosine A1 receptors in rat striatal glutamatergic nerve terminals. Neurosci Lett 220:163–166

    Article  PubMed  Google Scholar 

  70. Ambrósio AF, Malva JO, Carvalho AP, Carvalho CM (1997) Inhibition of N-P/Q- and other types of Ca2+ channels in rat hippocampal nerve terminals by the adenosine A1 receptor. Eur J Pharmacol 340:301–310

    Article  PubMed  Google Scholar 

  71. Zamponi GW, Snutch TP (1998) Modulation of voltage-dependent calcium channels by G proteins. Curr Opin Neurobiol 8:351–356

    Article  CAS  PubMed  Google Scholar 

  72. Kaneko S, Akaike A, Satoh M (1999) Receptor-mediated of voltage-dependent Ca2+ channels via heteromeric G-proteins in neurons. Jpn J Pharmacol 81:324–331

    Article  CAS  PubMed  Google Scholar 

  73. Chieng B, Bekkers JM (2001) Inhibition of calcium channels by opioid- and adenosine-receptor agonists in neurons of the nucleus accumbens. Br J Pharmacol 133:337–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Okada M, Nutt DJ, Murakami T, Zhu G, Kamata A, Kawata Y, Kaneko S (2001) Adenosine receptor subtypes modulate two major functional pathways for hippocampal serotonin release. J Neurosci 21:628–640

    CAS  PubMed  Google Scholar 

  75. Tedford HW, Zamponi GW (2006) Direct G protein modulation of Cav2 calcium channels. Pharmacol Rev 58:837–862

    Article  CAS  PubMed  Google Scholar 

  76. Olson PA, Tkatch T, Hernandez-Lopez S, Ulrich S, Ilijic E, Mugnaini E, Zhang H, Bezprozvanny I, Surmeier DJ (2005) G-protein-coupled receptor modulation of striatal CaV1.3 L-type Ca2+ channels is dependent on a Shank-binding domain. J Neurosci 25(5):1050–62

    Article  CAS  PubMed  Google Scholar 

  77. Oliveira L, Timóteo MA, Correia-de-Sá P (2004) Tetanic depression is overcome by tonic adenosine A(2A) receptor facilitation of L-type Ca(2+) influx into rat motor nerve terminals. J Physiol 560:157–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Antonio Laville, Gabriela X. Ayala, Adriana Hernandez, Mariana Duhne, Ernesto A. Rendon, and Dagoberto Tapia for technical support and advice and to Dr. Claudia Rivera for animal care.

Financial disclosure related to research covered in this article

This work was supported by the Consejo Nacional de Ciencia y Tecnología [CONACyT-México] grants 154131 and 98004 to JB and EG, respectively, by grants from Dirección General de Asuntos del Personal Académico. Universidad Nacional Autónoma de México (DGAPA-UNAM) to JB and EG, respectively, and by the Mexico-Germany Agreement Consejo Nacional de Ciencia y Tecnología-Deutsche Forschungsgemeinschaft (CONACyT-DFG) Grant I0110/193/10 FON.INST.-29-10 to JB. Hernandez-Gonzalez O, Hernandez-Flores T and Arias-Garcia M have CONACyT doctoral fellowships. Data in this work are part of O H-G doctoral dissertation in the Posgrado en Ciencias Biomédicas de la Universidad Nacional Autónoma de México. Prieto GA and Perez-Burgos A were graduate students in the same institution and had CONACyT doctoral fellowships. No conflicts of interest are declared.

Financial disclosures of all authors [for the preceding 12 months]

Hernandez-Gonzalez O: Graduate student with a CONACyT scholarship.

Hernandez-Flores T: Graduate student with a CONACyT scholarship.

Prieto GA: On postdoctoral residence.

Perez-Burgos A: On postdoctoral residence.

Arias-García M: Graduate student with a CONACyT scholarship

Bargas J: Universidad Nacional Autónoma de México, Professor.

Galarraga E: Universidad Nacional Autónoma de México, Professor.

Documentation of author roles

Hernandez-Gonzalez O: Design, execution of experiments, statistical analysis, and writing of the first draft of the manuscript. Hernandez-Flores T: execution of experiments. Arias-García M: execution of experiments. Prieto GA, Perez-Burgos A: execution of first experiments and assessment of viability. Bargas J: Conception, design, and organization of the research project. Galarraga E: Review, critique, and final organization of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bargas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández-González, O., Hernández-Flores, T., Prieto, G.A. et al. Modulation of Ca2+-currents by sequential and simultaneous activation of adenosine A1 and A2A receptors in striatal projection neurons. Purinergic Signalling 10, 269–281 (2014). https://doi.org/10.1007/s11302-013-9386-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-013-9386-z

Keywords

Navigation