Skip to main content

Advertisement

Log in

Low-rank dimensionality reduction for multi-modality neurodegenerative disease identification

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel dimensionality reduction method of taking the advantages of the variability, sparsity, and low-rankness of neuroimaging data for Alzheimer’s Disease (AD) classification. We first take the variability of neuroimaging data into account by partitioning them into sub-classes by means of clustering, which thus captures the underlying multi-peak distributional characteristics in neuroimaging data. We then iteratively conduct Low-Rank Dimensionality Reduction (LRDR) and orthogonal rotation in a sparse linear regression framework, in order to find the low-dimensional structure of high-dimensional data. Experimental results on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset showed that our proposed model helped enhance the performances of AD classification, outperforming the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Notes

  1. http://www.loni.usc.edu/ADNI.

  2. Besides, the remaining 84 MCI subjects include 33 subjects that did not convert in 24 months but converted in 36 months, and 51 subjects that were MCI at base line but were missed at any available time points among 0 – 96 months.

  3. http://mipav.cit.nih.gov/clickwrap.php.

  4. In this work, we extract the same number of features from MRI and PET as described in Section 2.1 and thus their feature dimensions are the same. However, it should be noted that the proposed method can be easily extended to multiple modalities with different numbers of features. Moreover, in the multi-modality case of this work, r < min{rank(Bi),rank(Ai)} or r < min{rank(Bi),rank(A)}, i = 1, 2.

  5. In our experiments, we used matlab function ‘floor’ to discritize the real values of r.

  6. In Tables 25, the boldface denotes the maximum performance in each column. (Symbols * and ◇, respectively, represent statistically significant difference between the proposed method and the comparison methods under p < 0.05 and p < 0.001, on the paired-sample t-tests at 95% significance level.)

References

  1. Chételat, G., Eustache, F., Viader, F., De La Sayette, V., Pélerin, A., Mézenge, F., Hannequin, D., Dupuy, B., Baron, J.-C., Desgranges, B.: FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment. Neurocase 11(1), 14–25 (2005)

    Article  Google Scholar 

  2. Chu, C., Hsu, A.-L., Chou, K.-H., Bandettini, P., Lin, C.: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. Neuroimage 60(1), 59–70 (2012)

    Article  Google Scholar 

  3. Deng, X., Li, Y., Weng, J., Zhang, J.: Feature selection for text classification: A review. Multimedia Tools and Applications, 1–20 (2018)

  4. Fox, N.C., Schott, J.M.: Imaging cerebral atrophy: normal ageing to Alzheimer’s disease. Lancet 363(9406), 392–394 (2004)

    Article  Google Scholar 

  5. Gao, L., Guo, Z., Zhang, H., Xu, X., Shen, H.T.: Video captioning with attention-based LSTM and semantic consistency. IEEE Trans. Multimed. 19(9), 2045–2055 (2017)

    Article  Google Scholar 

  6. Gower, J.C., Dijksterhuis, G.B.: Procrustes problems, vol. 3 (2004)

  7. Hu, R., Zhu, X., Cheng, D., He, W., Yan, Y., Song, J., Zhang, S.: Graph self-representation method for unsupervised feature selection. Neurocomputing 220, 130–137 (2017)

    Article  Google Scholar 

  8. Izenman, A.J.: Reduced-rank regression for the multivariate linear model. J. Multivar. Anal. 5(2), 248–264 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254 (1967)

    Article  MATH  Google Scholar 

  10. Jorgensen, M.: Iteratively reweighted least squares. Encyclopedia of Environmetrics (2006)

  11. Kabani, N.J.: 3D anatomical atlas of the human brain. In: Human Brain Mapping Conference (1998)

  12. Lahmiri, S.: Image characterization by fractal descriptors in variational mode decomposition domain: application to brain magnetic resonance. Physica A: Stat. Mech. Appl. 456, 235–243 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lahmiri, S., Boukadoum, M.: New approach for automatic classification of Alzheimer’s disease, mild cognitive impairment and healthy brain magnetic resonance images. Healthcare Technol. Lett. 1(1), 32–36 (2014)

    Article  Google Scholar 

  14. Lei, C., Zhu, X.: Unsupervised feature selection via local structure learning and sparse learning. https://doi.org/10.1007/s11042--017--5381--7, p. 11 (2017)

  15. Liu, F., Wee, C.-Y., Chen, H., Shen, D.: Inter-modality relationship constrained multi-modality multi-task feature selection for alzheimer’s disease and mild cognitive impairment identification. Neuroimage 84, 466–475 (2014)

    Article  Google Scholar 

  16. Lu, C., Lin, Z., Yan, S.: Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization. IEEE Trans. Image Process. 24(2), 646–654 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ma, Z., Sun, T.: Adaptive sparse reduced-rank regression. arXiv:1403.1922 (2014)

  18. Misra, C., Fan, Y., Davatzikos, C.: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. Neuroimage 44(4), 1415–1422 (2009)

    Article  Google Scholar 

  19. Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., Alzheimer’s Disease Neuroimaging Initiative, et al.: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage 104, 398–412 (2015)

    Article  Google Scholar 

  20. Noppeney, U., Penny, W.D., Price, C.J., Flandin, G., Friston, K.J.: Identification of degenerate neuronal systems based on intersubject variability. Neuroimage 30(3), 885–890 (2006)

    Article  Google Scholar 

  21. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  22. Rocchi, L., Chiari, L., Cappello, A., Horak, F.B: Identification of distinct characteristics of postural sway in parkinson’s disease: a feature selection procedure based on principal component analysis. Neurosci. Lett. 394(2), 140–145 (2006)

    Article  Google Scholar 

  23. Sato, J.R., Hoexter, M.Q., Fujita, A., Rohde, L.A.: Evaluation of pattern recognition and feature extraction methods in ADHD prediction. Frontiers in Systems Neuroscience, 6 (2012)

  24. Shen, D., Davatzikos, C.: HAMMER: hierarchical attribute matching mechanism for elastic registration, vol. 21 (2002)

  25. Song, J., Guo, Y., Gao, L., Li, X., Hanjalic, A., Shen, H.T.: From deterministic to generative: Multi-modal stochastic rnns for video captioning. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2018.2851077 (2017)

  26. Song, J., Zhang, H., Li, X., Gao, L., Wang, M., Hong, R.: Self-supervised video hashing with hierarchical binary auto-encoder. IEEE Trans. Image Process. 27 (7), 3210–3221 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sui, J., Adali, T., Yu, Q., Chen, J., Calhoun, V.D.: A review of multivariate methods for multimodal fusion of brain imaging data. J. Neurosci. Methods 204(1), 68–81 (2012)

    Article  Google Scholar 

  28. Velu, R., Reinsel, G.C.: Multivariate reduced-rank regression: theory and applications, vol. 136 (2013)

  29. Wang, H., Nie, F., Huang, H., Risacher, S., Saykin, A.J., Li, S.: Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression. In: MICCAI, pp. 115–123 (2011)

  30. Wang, X., Gao, L., Wang, P., Sun, X., Liu, X.: Two-stream 3-d convnet fusion for action recognition in videos with arbitrary size and length. IEEE Trans. Multimed. 20(3), 634–644 (2018)

    Article  Google Scholar 

  31. Yang, M., Zheng, H., Wang, H., McClean, S.: Feature selection and construction for the discrimination of neurodegenerative diseases based on gait analysis. In: PCTH, pp. 1–7 (2009)

  32. Yang, Y., Zhou, J., Ai, J., Yi, B., Hanjalic, A., Shen, H.T.: Video captioning by adversarial lstm. IEEE Transactions on Image Processing. https://doi.org/10.1109/TIP.2018.2855422 (2018)

  33. Yi, B., Yang, Y., Shen, F., Xie, N., Shen, H.T., Li, X.: Describing video with attention based bidirectional lstm. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2018.2831447 (2018)

  34. Zhang, D., Shen, D.: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. Neuroimage 59 (2), 895–907 (2012)

    Article  MathSciNet  Google Scholar 

  35. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

  36. Zhang, S., Li, X., Zong, M., Zhu, X., Wang, R.: Efficient knn classification with different numbers of nearest neighbors. IEEE Trans. Neural Netw. Learn. Syst. 29 (5), 1774–1785 (2018)

    Article  MathSciNet  Google Scholar 

  37. Zheng, W., Zhu, X., Zhu, Y., Hu, R., Lei, C.: Dynamic graph learning for spectral feature selection. Multimedia Tools and Applications. https://doi.org/10.1007/s11042--017--5272--y (2017)

  38. Zheng, W., Zhu, X., Wen, G., Zhu, Y., Yu, H., Gan, J.: Unsupervised feature selection by self-paced learning regularization. Pattern Recognition Letters, https://doi.org/10.1016/j.patrec.2018.06.029 (2018)

  39. Zhu, M., Martinez, A.M: Subclass discriminant analysis. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1274–1286 (2006)

    Article  Google Scholar 

  40. Zhu, X., Suk, H.-I., Shen, D.: A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis. Neuroimage 14(0), 1–30 (2014)

    Article  Google Scholar 

  41. Zhu, X., Zhang, L., Zi, H.: A sparse embedding and least variance encoding approach to hashing. IEEE Trans. Image Process. 23(9), 3737–3750 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhu, X., Li, X., Zhang, S.: Block-row sparse multiview multilabel learning for image classification. IEEE Trans. Cybern. 46(2), 450–461 (2016)

    Article  Google Scholar 

  43. Zhu, X., Suk, H.-I., Lee, S.-W., Shen, D.: Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification. IEEE Trans. Biomed. Eng. 63(3), 607–618 (2016)

    Article  Google Scholar 

  44. Zhu, X., Li, X., Zhang, S., Ju, C., Wu, X.: Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans. Neural Netw. Learn. Syst. 28 (6), 1263–1275 (2017)

    Article  MathSciNet  Google Scholar 

  45. Zhu, X., Li, X., Zhang, S., Xu, Z., Yu, L., Wang, C.: Graph pca hashing for similarity search. IEEE Trans. Multimed. 19(9), 2033–2044 (2017)

    Article  Google Scholar 

  46. Zhu, X., Suk, H.-I., Huang, H., Shen, D.: Low-rank graph-regularized structured sparse regression for identifying genetic biomarkers. IEEE Trans. Big Data 3(4), 405–414 (2017)

    Article  Google Scholar 

  47. Zhu, X., Suk, H.-I., Wang, L., Lee, S.-W., Shen, D.: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Med. Image Anal. 38, 205–214 (2017)

    Article  Google Scholar 

  48. Zhu, X., Zhang, S., He, W., Hu, R., Lei, C., Zhu, P.: One-step multi-view spectral clustering. IEEE Transactions on Knowledge and Data Engineering, https://doi.org/10.1109/TKDE.2018.2873378 (2018)

  49. Zhu, X., Zhang, S., Hu, R., Zhu, Y., et al.: Local and global structure preservation for robust unsupervised spectral feature selection. IEEE Trans. Knowl. Data Eng. 30(3), 517–529 (2018)

    Article  Google Scholar 

  50. Zhu, X., Zhang, S., Li, Y., Zhang, J., Yang, L., Fang, Y.: Low-rank sparse subspace for spectral clustering. IEEE Transactions on Knowledge and Data Engineering, https://doi.org/10.1109/TKDE.2018.2858782 (2018)

Download references

Acknowledgments

This work was supported in part by NIH grants (EB008374, AG041721, AG049371, AG042599, EB022880). X. Zhu was also supported by the National Natural Science Foundation of China (Grants No: 61573270 and 61876046); the Project of Guangxi Science and Technology (GuiKeAD17195062); the Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing; Strategic Research Excellence Fund at Massey University; and Marsden Fund of New Zealand (grant No: MAU1721). H.I. Suk was also supported by Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government (No. 2017-0-00451).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Deep vs. Shallow: Learning for Emerging Web-scale Data Computing and Applications

Guest Editors: Jingkuan Song, Shuqiang Jiang, Elisa Ricci, and Zi Huang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Suk, HI. & Shen, D. Low-rank dimensionality reduction for multi-modality neurodegenerative disease identification. World Wide Web 22, 907–925 (2019). https://doi.org/10.1007/s11280-018-0645-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-018-0645-3

Keywords

Navigation