Skip to main content

Advertisement

Log in

Reconfigurable Antenna and Performance Optimization Approach

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Reconfigurable antenna plays a tremendous role in the modern wireless communication engineering. Already lot of works has been proposed by researchers related to every aspect of the reconfigurable antenna development. For the future of communication engineering, researchers have to develop power efficient multiband antenna which can resonance at high frequency. For this, every design phase of reconfigurable antenna need to re-watch, start from the selection of substrate material, feeding technology, design structure to switching techniques. This review paper covers all the proposed techniques and methods for each design aspect and analysis them to determine deficiency and problem and propose as the future scope. Conclusion of each aspect will help researchers to start working in new untouched areas which will enhance the antenna performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

[25]

Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mansour, A., Tayel, A. F., Khames, A., et al. (2019). Towards software defined antenna for cognitive radio networks through appropriate selection of RF-switch using reconfigurable antenna array. AEU: International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2019.01.033.

    Article  Google Scholar 

  2. Ali, T., Pathan, S., & Biradar, R. C. (2019). Multiband, frequency reconfigurable and metamaterial antennas design techniques. Present and future research directions.

  3. Boufrioua, A. (2019). Frequency reconfigurable antenna designs using PIN diode for wireless communication applications. Wireless Personal Communications. https://doi.org/10.1007/s11277-019-06816-x.

    Article  Google Scholar 

  4. Ali, T., Muzammil Khaleeq, M., & Biradar, R. C. (2018). A multiband reconfigurable slot antenna for wireless applications. AEU: International Journal of Electronics and Communications,84, 273–280. https://doi.org/10.1016/j.aeue.2017.11.033.

    Article  Google Scholar 

  5. He, X., Gao, P., Zhu, Z., et al. (2019). A flexible pattern reconfigurable antenna for WLAN wireless systems. Journal of Electromagnetic Waves and Applications. https://doi.org/10.1080/09205071.2019.1576547.

    Article  Google Scholar 

  6. Sharma, M. (2019). Reconfigurable (H-T-E) DGS monopole antenna with switchable band notch characteritics for wireless applications (pp. 2–6).

  7. Reconfigurable, S. M., Singh, S., Varma, R., & Hussain, S. (2019). Superwideband monopole reconfigurable antenna with triple notched band characteristics for numerous applications in wireless system. Wireless Personal Communications,106, 987–999. https://doi.org/10.1007/s11277-019-06199-z.

    Article  Google Scholar 

  8. Sharma, K., Karmakar, A., Sharma, M., et al. (2019). International Journal of Electronics and Communications (AEÜ) Reconfigurable dual notch band antenna on Si-substrate integrated with RF MEMS SP4T switch for GPS, 3G, 4G, bluetooth, UWB and close range radar applications. AEU: International Journal of Electronics and Communications,110, 152873. https://doi.org/10.1016/j.aeue.2019.152873.

    Article  Google Scholar 

  9. Kumar, N. (2019). Switchable multiband reconfigurable CPW-fed multiband monopole antenna for GSM1900/LTE2600/WiMAX wireless applications (p. 1).

  10. Shah, I. A., Hayat, S., Basir, A., et al. (2018). Design and analysis of a hexa-band frequency reconfigurable antenna for wireless communication. AEU: International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2018.10.012.

    Article  Google Scholar 

  11. Mahouti, P. (2019). Design optimization of a pattern reconfigurable microstrip antenna using differential evolution and 3D EM simulation-based neural network model (pp. 1–10). https://doi.org/10.1002/mmce.21796.

  12. Günes, F. (2019). Microstrip tapered traveling wave antenna for wide range of beam scanning in X- and Ku-bands (pp. 21–24). https://doi.org/10.1002/mmce.21771.

  13. Yadav, R., & Patel, P. N. (2017). EBG-inspired reconfigurable patch antenna for frequency diversity application. AEU: International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2017.03.022.

    Article  Google Scholar 

  14. Cao, W., Zhang, B., & Liu, A., et al. (2011). Multi-frequency and dual-mode patch antenna based on electromagnetic band-gap (EBG) structure (Vol. 1, pp. 1–6).

  15. Bai, Q., Ford, K. L., & Langley, R. J. (2014). Switchable electromagnetic bandgap surface wave antenna. International Journal of Antennas and Propagation,2014, 1–8. https://doi.org/10.1155/2014/693852.

    Article  Google Scholar 

  16. Bala, B. D., Murad, N. A., & Rahim, M. K. A. (2014). Small electrical metamaterial antenna based on coupled electric field resonator with enhanced bandwidth. Electronics Letters,50, 138–139. https://doi.org/10.1049/el.2013.3884.

    Article  Google Scholar 

  17. Heydari, S., Pedram, K., Ahmed, Z., & Zarrabi, F. B. (2017). Dual band monopole antenna based on metamaterial structure with narrowband and UWB resonances with reconfigurable quality. AEU: International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2017.07.015.

    Article  Google Scholar 

  18. Xu, H. X., Wang, G. M., & Qi, M. Q. (2013). A miniaturized triple-band metamaterial antenna with radiation pattern selectivity and polarization diversity. Progress in Electromagnetics Research,137, 275–292. https://doi.org/10.2528/Pier12081008.

    Article  Google Scholar 

  19. Saraswat, R. K. (2019). A vertex-fed hexa-band frequency reconfigurable antenna for wireless applications (pp. 8–13). https://doi.org/10.1002/mmce.21893.

  20. Rajeshkumar, V., & Raghavan, S. (2014). A compact metamaterial inspired triple band antenna for reconfigurable WLAN/WiMAX applications. AEU: International Journal of Electronics and Communications,69, 274–280. https://doi.org/10.1016/j.aeue.2014.09.012.

    Article  Google Scholar 

  21. Lakrit, S., Das, S., El, A., et al. (2019). International Journal of Electronics and Communications (AEÜ) regular paper a compact UWB monopole patch antenna with reconfigurable band-notched characteristics for Wi-MAX and WLAN applications. AEU: International Journal of Electronics and Communications,105, 106–115. https://doi.org/10.1016/j.aeue.2019.04.001.

    Article  Google Scholar 

  22. Daniel, R. S., Pandeeswari, R., & Raghavan, S. (2017). Offset-fed complementary split ring resonators loaded monopole antenna for multiband operations. AEU: International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2017.05.016.

    Article  Google Scholar 

  23. Dang, L., Lei, Z. Y., Xie, Y. J., et al. (2010). A compact microstrip slot triple-band antenna for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters,9, 1178–1181. https://doi.org/10.1109/LAWP.2010.2098433.

    Article  Google Scholar 

  24. Kishore, N., Prakash, A., & Tripathi, V. S. (2016). A reconfigurable ultra wide band antenna with defected ground structure for its application. AEU: International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2016.12.009.

    Article  Google Scholar 

  25. Hussain, R., & Sharawi, M. S. (2019). Miniaturized frequency reconfigurable pentagonal MIMO slot antenna for interweave CR applications (pp. 1–12). https://doi.org/10.1002/mmce.21811.

  26. Sun, C., Zheng, H., Zhang, L., & Liu, Y. (2014). A compact frequency-reconfigurable patch antenna for Beidou (COMPASS) navigation system. Antennas and Wireless Propagation Letters,13, 967–970.

    Article  Google Scholar 

  27. Tiruchirappalli- T. (2017). Applications (pp. 171–174).

  28. Bakariya, P. S., Dwari, S., Sarkar, M., & Mandal, M. K. (2015). Proximity-coupled multiband microstrip antenna for wireless applications. IEEE Antennas and Wireless Propagation Letters,14, 646–649. https://doi.org/10.1109/LAWP.2014.2376693.

    Article  Google Scholar 

  29. Salamat, C. D., Haneishi, M., & Kimura, Y. (2006). L-probe fed multiband microstrip antennas with slots. Asia-Pacific Microw Conf Proceedings, APMC,3, 1515–1518. https://doi.org/10.1109/APMC.2006.4429694.

    Article  Google Scholar 

  30. Anantha, B., Merugu, L., & Rao, S. (2016). A novel single feed frequency and polarization reconfigurable microstrip patch antenna. AEU: International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2016.11.012.

    Article  Google Scholar 

  31. Qin, P. Y., Guo, Y. J., Cai, Y., et al. (2011). A reconfigurable antenna with frequency and polarization agility. IEEE Antennas and Wireless Propagation Letters,10, 1373–1376. https://doi.org/10.1109/LAWP.2011.2178226.

    Article  Google Scholar 

  32. Ruan, X. Z. C., & Ren, W. (2014). A Frequency and polarization reconfigurable U-slot microstrip patch antenna (pp. 49–52).

  33. Valizade, N., & Oraizi, H. (2016) A design of reconfigurable CPW-fed planar antenna for multiband MIMO applications (pp. 1–20).

  34. Bharathi, A., Lakshminarayana, M., & Rao, P. V. D. S. (2017). A quad-polarization and frequency reconfigurable square ring slot loaded microstrip patch antenna for WLAN applications. AEU: International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2017.05.015.

    Article  Google Scholar 

  35. Raman, S., Mohanan, P., Timmons, N., & Morrison, J. (2013). Microstrip-fed pattern- and polarization-reconfigurable compact truncated monopole antenna. IEEE Antennas and Wireless Propagation Letters,12, 710–713. https://doi.org/10.1109/LAWP.2013.2263983.

    Article  Google Scholar 

  36. Huff, G. H., Feng, J., Zhang, S., & Bernhard, J. T. (2003). A novel radiation pattern and frequency reconfigurable single turn square spiral microstrip antenna. IEEE Microwave and Wireless Components Letters,13, 57–59. https://doi.org/10.1109/LMWC.2003.808714.

    Article  Google Scholar 

  37. Nazeri, A. H., Falahati, A., & Edwards, R. M. (2019). A novel compact fractal UWB antenna with triple reconfigurable notch reject bands applications. AEU: International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2019.01.018.

    Article  Google Scholar 

  38. Martinis, M., Bernard, L., Mahdjoubi, K., et al. (2016). Wideband antenna in cavity based on metasurfaces. IEEE Antennas and Wireless Propagation Letters,15, 1053–1056. https://doi.org/10.1109/LAWP.2015.2491609.

    Article  Google Scholar 

  39. Huitema, L., Koubeissi, M., Mouhamadou, M., et al. (2011). Compact and multiband dielectric resonator antenna with pattern diversity for multistandard mobile handheld devices. IEEE Transactions on Antennas and Propagation,59, 4201–4208. https://doi.org/10.1109/TAP.2011.2164183.

    Article  Google Scholar 

  40. Denidni, T. A., Rao, Q., & Sebak, A. R. (2005). Broadband L-shaped dielectric resonator antenna. IEEE Antennas and Wireless Propagation Letters,4, 453–454. https://doi.org/10.1109/LAWP.2005.860198.

    Article  Google Scholar 

  41. Ali, T., Khaleeq, M. M., & Biradar, R. C. (2017). A multiband reconfigurable slot antenna for wireless applications. AEU: International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2017.11.033.

    Article  Google Scholar 

  42. Smith, D. R., Smith, D. R., Padilla, W. J., et al. (2000). Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters,84, 4184–4187. https://doi.org/10.1103/PhysRevLett.84.4184.

    Article  Google Scholar 

  43. Pirooj, A., Naser-Moghadasi, M., Zarrabi, F. B., & Sharifi, A. (2017). A dual band slot antenna for wireless applications with circular polarization. Progress in Electromagnetics Research,71, 69–77.

    Article  Google Scholar 

  44. Gong, L., Chan, K. Y., & Ramer, R. (2016). Substrate integrated waveguide H-plane horn antenna with improved front-to-back ratio and reduced sidelobe level. IEEE Antennas and Wireless Propagation Letters,15, 1835–1838. https://doi.org/10.1109/LAWP.2016.2538823.

    Article  Google Scholar 

  45. Phani Kumar, K. V., & Karthikeyan, S. S. (2015). Wideband three section branch line coupler using triple open complementary split ring resonator and open stubs. AEU: International Journal of Electronics and Communications,69, 1412–1416. https://doi.org/10.1016/j.aeue.2015.06.003.

    Article  Google Scholar 

  46. Samson Daniel, R., Pandeeswari, R., & Raghavan, S. (2017). Offset-fed complementary split ring resonators loaded monopole antenna for multiband operations. AEU: International Journal of Electronics and Communications,78, 72–78. https://doi.org/10.1016/j.aeue.2017.05.016.

    Article  Google Scholar 

  47. Shukla, S. S., Verma, R. K., & Gohir, G. S. (2015). Investigation of the effect of Substrate material on the performance of Microstrip antenna. IEEE. https://doi.org/10.1109/ICRITO.2015.7359350.

    Article  Google Scholar 

  48. Electron, I. J., Aeü, C., Ali, T., et al. (2018). A miniaturized multiband reconfigurable fractal slot antenna for GPS/GNSS/Bluetooth/WiMAX/X-band applications. International Journal of Electronics and Communications,94, 234–243. https://doi.org/10.1016/j.aeue.2018.07.017.

    Article  Google Scholar 

  49. Kapil, M. (2019). Minitaurized reconfigurable multiband antennas for GPS, UMTS, WiMAX & WLAN wireless. IJRTE,1, 3–7.

    Google Scholar 

  50. Kapil, M., & Sharma, M. (2019). Minitaurized reconfigurable multiband antennas for GPS, UMTS, WiMAX & WLAN wireless applications (pp. 435–439). https://doi.org/10.35940/ijrte.B1080.0782S719.

  51. Islam, M. M., Islam, M. T., & Faruque, M. R. I. (2013). Dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands. Scientific World Journal. https://doi.org/10.1155/2013/378420.

    Article  Google Scholar 

  52. Kaur, A., & Kumar, N. (2013). A study of various fractal antenna design techniques for wireless applications. IJECT,7109, 47–50.

    Google Scholar 

  53. Prasad, N., & Mithilesh, G. (2017). Development of a reconfigurable and miniaturized CPW antenna for selective and wideband communication. Wireless Personal Communications. https://doi.org/10.1007/s11277-017-3942-8.

    Article  Google Scholar 

  54. Khan, A., Gour, P., & Nema, R. (2012). Reflection properties of three different substrates on circular microstrip patch antenna. International Journal of Emerging Technology and Advanced Engineering,2, 177–182.

    Google Scholar 

  55. Khan, A., & Nema, R. (2012). Analysis of five different dielectric substrates on microstrip patch antenna. International Journal of Computers and Applications,55, 6–12. https://doi.org/10.5120/8826-2905.

    Article  Google Scholar 

  56. Jyoth, B., Madhav, B. T. P., Murthy, V. V. S., Ujwala, D., & Ramesh, H. M. (2012). Analysis of a slot antenna for different substrate materials. International Journal of Advanced Engineering Research and Studies,1, 70–72.

    Google Scholar 

  57. Samsuzzaman, M., Islam, M. T., & Singh, M. J. (2014). Ceramic material based multiband patch antenna for satellite applications. Revue Roumaine des Sciences Techniques - Serie Électrotechnique et Énergétique,59, 77–85.

    Google Scholar 

  58. Ali, A., Ramzan, M., Alibakhshikenari, M., & Colantonio, P. (2019). Optically reconfigurable planar monopole antenna for cognitive radio application (pp. 1–6). https://doi.org/10.1002/mop.31678.

  59. Xu, H. X., Tang, S., Ma, S., et al. (2016). Tunable microwave metasurfaces for high-performance operations: Dispersion compensation and dynamical switch. Scientific Reports,6, 1–10. https://doi.org/10.1038/srep38255.

    Article  Google Scholar 

  60. Sam, S., & Lim, S. (2013). Compact frequency-reconfigurable half-mode substrate-integrated waveguide antenna. IEEE Antennas and Wireless Propagation Letters,12, 951–954.

    Article  Google Scholar 

  61. Sonker, A., Deo, A. P., Kumar, R. (2017). Design of reconfigurable alot antenna using varacter diode-print (pp. 511–515).

  62. Sharma, M. (2019). Compact multiband planar monopole antenna for Bluetooth, LTE, and reconfigurable UWB applications including X-band and Ku-band wireless communications (pp. 1–11). https://doi.org/10.1002/mmce.21668.

  63. Fathy, A. E., Rosen, A., Owen, H. S., et al. (2003). Silicon-based reconfigurable antennas-concepts, analysis, implementation, and feasibility. IEEE Transactions on Microwave Theory and Techniques,51, 1650–1661. https://doi.org/10.1109/TMTT.2003.812559.

    Article  Google Scholar 

  64. Fadamiro, A. O., Famoriji, O. J., Zakariyya, R. S., & Lin, F. (2019). Design of H-tree fractal slots frequency reconfigurable hexagonal patch antenna using PIN diodes (p. 5071). https://doi.org/10.1080/09205071.2019.1618740.

  65. Sharma, M. (2019). High rejection triple band notched reconfigurable monopole superwideband antenna including applications for WWAN and Bluetooth wireless communication systems. International Journal of Ultra Wideband Communications and Systems,3, 1–11.

    Google Scholar 

  66. Al-fadhali, N. (2019). Substrate integrated waveguide cavity backed frequency reconfigurable antenna for cognitive radio applies to internet of things applications (pp. 1–16). https://doi.org/10.1002/mmce.22020.

  67. Toktas. A. (2018). A compact reconfigurable printed antenna with band-notched characteristic (pp. 3–8). https://doi.org/10.1002/mop.31516.

  68. Su, H., Hu, H., Zhang, H., et al. (2018). Investigation of surface PiN diodes for a novel recon fi gurable antenna. Solid State Electronics,139, 48–53. https://doi.org/10.1016/j.sse.2017.09.017.

    Article  Google Scholar 

  69. Shi, S., Ding, W., & Luo, K. (2014). A monopole antenna with dual-band reconfigurable circular polarization. Progress in Electromagnetics Research C,55, 35–42.

    Article  Google Scholar 

  70. Cherian, M., Das, D. (2016). Triple band reconfigurable dual patch antenna with multiband and wideband operation. In: 2015 international conference on control communication comput India, ICCC 2015 (pp. 437–441). https://doi.org/10.1109/ICCC.2015.7432936.

  71. Idris, I. H., Hamid, M. R., Jamaluddin, M. H., et al. (2014). Single-, dual- and triple-band frequency reconfigurable antenna. Radioengineering,23, 805–811.

    Google Scholar 

  72. Yang, Z., Hu, X., Yang, J., et al. (2009). Maximum powers of low-loss series-shunt FET RF switches. Solid State Electronics,53, 117–119. https://doi.org/10.1016/j.sse.2008.11.009.

    Article  Google Scholar 

  73. Excellent, R. (2018). How and why to use PIN diodes for rf switching|DigiKey (pp. 1–12).

  74. Electron, I. J., Aeü, C., Varamini, G., et al. (2018). Microstrip Sierpinski fractal carpet for slot antenna with metamaterial loads for dual-band wireless application. International Journal of Electronics and Communications,84, 93–99. https://doi.org/10.1016/j.aeue.2017.11.028.

    Article  Google Scholar 

  75. Kazemi, A. H., & Mokhtari, A. (2017). Graphene-based patch antenna tunable in the three atmospheric windows. Optik: International Journal for Light and Electron Optics. https://doi.org/10.1016/j.ijleo.2017.05.113.

    Article  Google Scholar 

  76. Sharma, M., Awasthi, Y. K., & Singh, H. (2019). CPW fed high rejection notched UWB and X-band antenna on silicon. International Journal of Electronics,106(7), 945–959.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Kumar, P. & Sharma, M. Reconfigurable Antenna and Performance Optimization Approach. Wireless Pers Commun 112, 2187–2212 (2020). https://doi.org/10.1007/s11277-020-07145-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07145-0

Keywords

Navigation