Skip to main content
Log in

Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications

  • REVIEW
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pichia pastoris: (reclassified as Komagataella phaffii), a methylotrophic yeast strain has been widely used for heterologous protein production because of its unique advantages, such as readily achievable high-density fermentation, tractable genetic modifications and typical eukaryotic post-translational modifications. More recently, P. pastoris as a metabolic pathway engineering platform has also gained much attention. In this mini-review, we addressed recent advances of molecular toolboxes, including synthetic promoters, signal peptides, and genome engineering tools that established for P. pastoris. Furthermore, the applications of P. pastoris towards synthetic biology were also discussed and prospected especially in the context of genome-scale metabolic pathway analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98:5301–5317

    Article  CAS  Google Scholar 

  • Ang KS, Kyriakopoulos S, Li W, Lee DY (2016) Multi-omics data driven analysis establishes reference codon biases for synthetic gene design in microbial and mammalian cells. Methods 102:26–35

    Article  CAS  Google Scholar 

  • Araya-Garay JM, Ageitos JM, Vallejo JA, Veiga-Crespo P, Sanchez-Perez A, Villa TG (2012) Construction of a novel Pichia pastoris strain for production of xanthophylls. AMB Express 2:24

    Article  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  Google Scholar 

  • Blazeck J, Garg R, Reed B, Alper HS (2012) Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters. Biotechnol Bioeng 109:2884–2895

    Article  CAS  Google Scholar 

  • Blount BA, Weenink T, Vasylechko S, Ellis T (2012) Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology. PLoS ONE 7:e33279

    Article  CAS  Google Scholar 

  • Broach JR, Guarascio VR, Jayaram M (1982) Recombination within the yeast plasmid 2mu circle is site-specific. Cell 29:227–234

    Article  CAS  Google Scholar 

  • Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  CAS  Google Scholar 

  • Chung BK, Selvarasu S, Andrea C, Ryu J, Lee H, Ahn J, Lee H, Lee DY (2010) Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement. Microb Cell Fact 9:50

    Article  Google Scholar 

  • Ciofalo V, Barton N, Kreps J, Coats I, Shanahan D (2006) Safety evaluation of a lipase enzyme preparation, expressed in Pichia pastoris, intended for use in the degumming of edible vegetable oil. Regul Toxicol Pharmacol 45:1–8

    Article  CAS  Google Scholar 

  • Cos O, Ramon R, Montesinos JL, Valero F (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 5:17

    Article  Google Scholar 

  • Cregg JM, Madden KR (1989) Use of site-specific recombination to regenerate selectable markers. Mol Gen Genet 219:320–323

    Article  CAS  Google Scholar 

  • Cregg JM, Cereghino JL, Shi J, Higgins DR (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16:23–52

    Article  CAS  Google Scholar 

  • Cregg JM, Tolstorukov I, Kusari A, Sunga J, Madden K, Chappell T (2009) Expression in the yeast Pichia pastoris. Methods Enzymol 463:169–189

    Article  CAS  Google Scholar 

  • Curran KA, Karim AS, Gupta A, Alper HS (2013) Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications. Metab Eng 19:88–97

    Article  CAS  Google Scholar 

  • Curran KA, Crook NC, Karim AS, Gupta A, Wagman AM, Alper HS (2014) Design of synthetic yeast promoters via tuning of nucleosome architecture. Nat Commun 5:4002

    Article  CAS  Google Scholar 

  • Curran KA, Morse NJ, Markham KA, Wagman AM, Gupta A, Alper HS (2015) Short synthetic terminators for improved heterologous gene expression in yeast. ACS Synth Biol 4:824–832

    Article  CAS  Google Scholar 

  • Dahl RH, Zhang F, Alonso-Gutierrez J, Baidoo E, Batth TS, Redding-Johanson AM, Petzold CJ, Mukhopadhyay A, Lee TS, Adams PD, Keasling JD (2013) Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol 31:1039–1046

    Article  CAS  Google Scholar 

  • De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouze P, Van de Peer Y, Callewaert N (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27:561–566

    Article  Google Scholar 

  • Duckert P, Brunak S, Blom N (2004) Prediction of proprotein convertase cleavage sites. Protein Eng Des Sel 17:107–112

    Article  CAS  Google Scholar 

  • Felber M, Pichler H, Ruth C (2014) Strains and molecular tools for recombinant protein production in Pichia pastoris. Methods Mol Biol 1152:87–111

    Article  CAS  Google Scholar 

  • Ghosalkar A, Sahai V, Srivastava A (2008) Secretory expression of interferon-alpha 2b in recombinant Pichia pastoris using three different secretion signals. Protein Expr Purif 60:103–109

    Article  CAS  Google Scholar 

  • Govindappa N, Hanumanthappa M, Venkatarangaiah K, Periyasamy S, Sreenivas S, Soni R, Sastry K (2014) A new signal sequence for recombinant protein secretion in Pichia pastoris. J Microbiol Biotechnol 24:337–345

    Article  CAS  Google Scholar 

  • Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23. doi:10.1093/nar/30.6.e23

    Article  CAS  Google Scholar 

  • Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524

    Article  CAS  Google Scholar 

  • Hartner FS, Ruth C, Langenegger D, Johnson SN, Hyka P, Lin-Cereghino GP, Lin-Cereghino J, Kovar K, Cregg JM, Glieder A (2008) Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acids Res 36:e76. doi:10.1093/nar/gkn369

    Article  Google Scholar 

  • He Z, Huang Y, Qin Y, Liu Z, Mo D, Cong P, Chen Y (2012) Comparison of alpha-factor preprosequence and a classical mammalian signal peptide for secretion of recombinant xylanase xynB from yeast Pichia pastoris. J Microbiol Biotechnol 22:479–483

    Article  CAS  Google Scholar 

  • Heimo H, Palmu K, Suominen I (1997) Expression in Pichia pastoris and purification of Aspergillus awamori glucoamylase catalytic domain. Protein Expr Purif 10:70–79

    Article  CAS  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  Google Scholar 

  • Irani ZA, Kerkhoven EJ, Shojaosadati SA, Nielsen J (2016) Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins. Biotechnol Bioeng 113:961–969

    Article  CAS  Google Scholar 

  • Jin P, Kang Z, Zhang N, Du G, Chen J (2014) High-yield novel leech hyaluronidase to expedite the preparation of specific hyaluronan oligomers. Sci Rep 4:4471

    CAS  Google Scholar 

  • Jin P, Ding W, Du G, Chen J, Kang Z (2016a) DATEL: a scarless and sequence-independent DNA assembly method using thermostable exonucleases and ligase. ACS Synth Biol. doi:10.1021/acssynbio.6b00078

    Google Scholar 

  • Jin P, Kang Z, Zhang J, Zhang L, Du G, Chen J (2016b) Combinatorial evolution of enzymes and synthetic pathways using one-step PCR. ACS Synth Biol 5:259–268

    Article  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  • Kall L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036

    Article  CAS  Google Scholar 

  • Kang Z, Zhang N, Zhang Y (2016) Enhanced production of leech hyaluronidase by optimizing secretion and cultivation in Pichia pastoris. Appl Microbiol Biotechnol 100:707–717

    Article  CAS  Google Scholar 

  • Karaoglan M, Karaoglan FE, Inan M (2016) Comparison of ADH3 promoter with commonly used promoters for recombinant protein production in Pichia pastoris. Protein Expr Purif 121:112–117

    Article  CAS  Google Scholar 

  • Kim H, Yoo SJ, Kang HA (2015) Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res 15:1–16

    Article  Google Scholar 

  • Kottmeier K, Ostermann K, Bley T, Rodel G (2011) Hydrophobin signal sequence mediates efficient secretion of recombinant proteins in Pichia pastoris. Appl Microbiol Biotechnol 91:133–141

    Article  CAS  Google Scholar 

  • Kuwae S, Ohyama M, Ohya T, Ohi H, Kobayashi K (2005) Production of recombinant human antithrombin by Pichia pastoris. J Biosci Bioeng 99:264–271

    Article  CAS  Google Scholar 

  • Li P, Anumanthan A, Gao XG, Ilangovan K, Suzara VV, Duzgunes N, Renugopalakrishnan V (2007) Expression of recombinant proteins in Pichia pastoris. Appl Biochem Biotechnol 142:105–124

    Article  CAS  Google Scholar 

  • Liang S, Li C, Ye Y, Lin Y (2013) Endogenous signal peptides efficiently mediate the secretion of recombinant proteins in Pichia pastoris. Biotechnol Lett 35:97–105

    Article  CAS  Google Scholar 

  • Lin-Cereghino GP, Godfrey L, de la Cruz BJ, Johnson S, Khuongsathiene S, Tolstorukov I, Yan M, Lin-Cereghino J, Veenhuis M, Subramani S, Cregg JM (2006) Mxr1p, a key regulator of the methanol utilization pathway and peroxisomal genes in Pichia pastoris. Mol Cell Biol 26:883–897

    Article  CAS  Google Scholar 

  • Lin-Cereghino J, Hashimoto MD, Moy A, Castelo J, Orazem CC, Kuo P, Xiong S, Gandhi V, Hatae CT, Chan A, Lin-Cereghino GP (2008) Direct selection of Pichia pastoris expression strains using new G418 resistance vectors. Yeast 25:293–299

    Article  CAS  Google Scholar 

  • Ling Z, Ma T, Li J, Du G, Kang Z, Chen J (2012) Functional expression of trypsin from Streptomyces griseus by Pichia pastoris. J Ind Microbiol Biotechnol 39:1651–1662

    Article  CAS  Google Scholar 

  • Ling Z, Liu Y, Teng S, Kang Z, Zhang J, Chen J, Du G (2013) Rational design of a novel propeptide for improving active production of Streptomyces griseus trypsin in Pichia pastoris. Appl Environ Microbiol 79:3851–3855

    Article  CAS  Google Scholar 

  • Ling Z, Kang Z, Liu Y, Liu S, Chen J, Du G (2014) Improvement of catalytic efficiency and thermostability of recombinant Streptomyces griseus trypsin by introducing artificial peptide. World J Microbiol Biotechnol 30:1819–1827

    Article  CAS  Google Scholar 

  • Liu X, Wu D, Wu J, Chen J (2013) Optimization of the production of Aspergillus niger alpha-glucosidase expressed in Pichia pastoris. World J Microbiol Biotechnol 29:533–540

    Article  CAS  Google Scholar 

  • Liu B, Zhang Y, Zhang X, Yan C, Zhang Y, Xu X, Zhang W (2016) Discovery of a rhamnose utilization pathway and rhamnose-inducible promoters in Pichia pastoris. Sci Rep 6:27352

    Article  CAS  Google Scholar 

  • Love KR, Shah KA, Whittaker CA, Wu J, Bartlett MC, Ma D, Leeson RL, Priest M, Borowsky J, Young SK, Love JC (2016) Comparative genomics and transcriptomics of Pichia pastoris. BMC Genom 17:550

    Article  Google Scholar 

  • Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270

    Article  CAS  Google Scholar 

  • MacPherson M, Saka Y (2016) Short synthetic terminators for assembly of transcription units in vitro and stable chromosomal integration in yeast S. cerevisiae. ACS Synth Biol. doi:10.1021/acssynbio.6b00165

    Google Scholar 

  • Mao R, Teng D, Wang X, Zhang Y, Jiao J, Cao X, Wang J (2015) Optimization of expression conditions for a novel NZ2114-derived antimicrobial peptide-MP1102 under the control of the GAP promoter in Pichia pastoris X-33. BMC Microbiol 15:57

    Article  Google Scholar 

  • Marx H, Mattanovich D, Sauer M (2008) Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris. Microb Cell Fact 7:23

    Article  Google Scholar 

  • Massahi A, Calik P (2015) In-silico determination of Pichia pastoris signal peptides for extracellular recombinant protein production. J Theor Biol 364:179–188

    Article  CAS  Google Scholar 

  • Massahi A, Calik P (2016) Endogenous signal peptides in recombinant protein production by Pichia pastoris: from in-silico analysis to fermentation. J Theor Biol 408:22–33

    Article  CAS  Google Scholar 

  • Naatsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A (2012) Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS ONE 7:e39720

    Article  Google Scholar 

  • Nett JH, Gerngross TU (2003) Cloning and disruption of the PpURA5 gene and construction of a set of integration vectors for the stable genetic modification of Pichia pastoris. Yeast 20:1279–1290

    Article  CAS  Google Scholar 

  • Nett JH, Hodel N, Rausch S, Wildt S (2005) Cloning and disruption of the Pichia pastoris ARG1, ARG2, ARG3, HIS1, HIS2, HIS5, HIS6 genes and their use as auxotrophic markers. Yeast 22:295–304

    Article  CAS  Google Scholar 

  • Ohi H, Miura M, Hiramatsu R, Ohmura T (1994) The positive and negative cis-acting elements for methanol regulation in the Pichia pastoris AOX2 gene. Mol Gen Genet 243:489–499

    Article  CAS  Google Scholar 

  • Paifer E, Margolles E, Cremata J, Montesino R, Herrera L, Delgado JM (1994) Efficient expression and secretion of recombinant alpha amylase in Pichia pastoris using two different signal sequences. Yeast 10:1415–1419

    Article  CAS  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  Google Scholar 

  • Puxbaum V, Mattanovich D, Gasser B (2015) Quo vadis? The challenges of recombinant protein folding and secretion in Pichia pastoris. Appl Microbiol Biotechnol 99:2925–2938

    Article  CAS  Google Scholar 

  • Qin X, Qian J, Yao G, Zhuang Y, Zhang S, Chu J (2011) GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Appl Environ Microbiol 77:3600–3608

    Article  CAS  Google Scholar 

  • Rajkumar AS, Liu G, Bergenholm D, Arsovska D, Kristensen M, Nielsen J, Jensen MK, Keasling JD (2016) Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Res. doi:10.1093/nar/gkw553

    Google Scholar 

  • Redden H, Alper HS (2015) The development and characterization of synthetic minimal yeast promoters. Nat Commun 6:7810

    Article  CAS  Google Scholar 

  • Romero PA, Lussier M, Sdicu AM, Bussey H, Herscovics A (1997) Ktr1p is an alpha-1,2-mannosyltransferase of Saccharomyces cerevisiae. Comparison of the enzymic properties of soluble recombinant Ktr1p and Kre2p/Mnt1p produced in Pichia pastoris. Biochem J 321(Pt 2):289–295

    Article  CAS  Google Scholar 

  • Ruth C, Zuellig T, Mellitzer A, Weis R, Looser V, Kovar K, Glieder A (2010) Variable production windows for porcine trypsinogen employing synthetic inducible promoter variants in Pichia pastoris. Syst Synth Biol 4:181–191

    Article  CAS  Google Scholar 

  • Scorer CA, Clare JJ, McCombie WR, Romanos MA, Sreekrishna K (1994) Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Biotechnology (NY) 12:181–184

    Article  CAS  Google Scholar 

  • Soderholm J, Bevis BJ, Glick BS (2001) Vector for pop-in/pop-out gene replacement in Pichia pastoris. Biotechniques 31(306–310):312

    Google Scholar 

  • Spadiut O, Capone S, Krainer F, Glieder A, Herwig C (2014) Microbials for the production of monoclonal antibodies and antibody fragments. Trends Biotechnol 32:54–60

    Article  CAS  Google Scholar 

  • Spohner SC, Muller H, Quitmann H, Czermak P (2015) Expression of enzymes for the usage in food and feed industry with Pichia pastoris. J Biotechnol 202:118–134

    Article  CAS  Google Scholar 

  • Sunga AJ, Cregg JM (2004) The Pichia pastoris formaldehyde dehydrogenase gene (FLD1) as a marker for selection of multicopy expression strains of P. pastoris. Gene 330:39–47

    Article  CAS  Google Scholar 

  • Thompson CA (2010) FDA approves kallikrein inhibitor to treat hereditary angioedema. Am J Health Syst Pharm 67:93

    Article  Google Scholar 

  • Thor D, Xiong S, Orazem CC, Kwan AC, Cregg JM, Lin-Cereghino J, Lin-Cereghino GP (2005) Cloning and characterization of the Pichia pastoris MET2 gene as a selectable marker. FEMS Yeast Res 5:935–942

    Article  CAS  Google Scholar 

  • Vadhana AK, Samuel P, Berin RM, Krishna J, Kamatchi K, Meenakshisundaram S (2013) Improved secretion of Candida antarctica lipase B with its native signal peptide in Pichia pastoris. Enzym Microb Technol 52:177–183

    Article  CAS  Google Scholar 

  • Varnai A, Tang C, Bengtsson O, Atterton A, Mathiesen G, Eijsink VG (2014) Expression of endoglucanases in Pichia pastoris under control of the GAP promoter. Microb Cell Fact 13:57

    Article  Google Scholar 

  • Vogl T, Glieder A (2013) Regulation of Pichia pastoris promoters and its consequences for protein production. N Biotechnol 30:385–404

    Article  CAS  Google Scholar 

  • Vogl T, Hartner FS, Glieder A (2013) New opportunities by synthetic biology for biopharmaceutical production in Pichia pastoris. Curr Opin Biotechnol 24:1094–1101

    Article  CAS  Google Scholar 

  • Vogl T, Ruth C, Pitzer J, Kickenweiz T, Glieder A (2014) Synthetic core promoters for Pichia pastoris. ACS Synth Biol 3:188–191

    Article  CAS  Google Scholar 

  • Vogl T, Sturmberger L, Kickenweiz T, Wasmayer R, Schmid C, Hatzl AM, Gerstmann MA, Pitzer J, Wagner M, Thallinger GG, Geier M, Glieder A (2016) A toolbox of diverse promoters related to methanol utilization: functionally verified parts for heterologous pathway expression in Pichia pastoris. ACS Synth Biol 5:172–186

    Article  CAS  Google Scholar 

  • Weninger A, Glieder A, Vogl T (2015) A toolbox of endogenous and heterologous nuclear localization sequences for the methylotrophic yeast Pichia pastoris. FEMS Yeast Res. doi:10.1093/femsyr/fov082

    Google Scholar 

  • Weninger A, Hatzl AM, Schmid C, Vogl T, Glieder A (2016) Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris. J Biotechnol 235:139–149

    Article  CAS  Google Scholar 

  • Wriessnegger T, Augustin P, Engleder M, Leitner E, Muller M, Kaluzna I, Schurmann M, Mink D, Zellnig G, Schwab H, Pichler H (2014) Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metab Eng 24:18–29

    Article  CAS  Google Scholar 

  • Xuan Y, Zhou X, Zhang W, Zhang X, Song Z, Zhang Y (2009) An upstream activation sequence controls the expression of AOX1 gene in Pichia pastoris. FEMS Yeast Res 9:1271–1282

    Article  CAS  Google Scholar 

  • Yamanishi M, Ito Y, Kintaka R, Imamura C, Katahira S, Ikeuchi A, Moriya H, Matsuyama T (2013) A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a ‘‘terminatome’’ toolbox. ACS Synth Biol 2:337–347

    Article  CAS  Google Scholar 

  • Yang J, Jiang W, Yang S (2009) mazF as a counter-selectable marker for unmarked genetic modification of Pichia pastoris. FEMS Yeast Res 9:600–609

    Article  CAS  Google Scholar 

  • Yang JK, Liu LY, Dai JH, Li Q (2013) De novo design and synthesis of Candida antarctica lipase B gene and alpha-factor leads to high-level expression in Pichia pastoris. PLoS ONE 8:e53939

    Article  CAS  Google Scholar 

  • Zhang AL, Luo JX, Zhang TY, Pan YW, Tan YH, Fu CY, Tu FZ (2009) Recent advances on the GAP promoter derived expression system of Pichia pastoris. Mol Biol Rep 36:1611–1619

    Article  CAS  Google Scholar 

  • Zhang Y, Ling Z, Du G, Chen J, Kang Z (2016) Improved production of active Streptomyces griseus trypsin with a novel auto-catalyzed strategy. Sci Rep 6:23158

    Article  CAS  Google Scholar 

  • Zhu T, You L, Gong F, Xie M, Xue Y, Li Y, Ma Y (2011) Combinatorial strategy of sorbitol feeding and low-temperature induction leads to high-level production of alkaline beta-mannanase in Pichia pastoris. Enzym Microb Technol 49:407–412

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (31670092), the Natural Science Foundation of Jiangsu Province (BK20141107), a grant from the Key Technologies R&D Program of Jiangsu Province, China (BE2014607); Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Z., Huang, H., Zhang, Y. et al. Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications. World J Microbiol Biotechnol 33, 19 (2017). https://doi.org/10.1007/s11274-016-2185-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2185-2

Keywords

Navigation