Skip to main content

Advertisement

Log in

Refinement of the fundamental niche of black mangrove (Avicennia germinans) seedlings in Louisiana: Applications for restoration

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Black mangrove (Avicennia germinans) occurs at the northern boundary of its North American range in the coastal salt marshes and barrier islands of Louisiana. This species provides important habitat and sustainability to Louisiana’s coastal salt marshes via its woody structure and extensive root system. Refinement of the physiological tolerances of A. germinans seedlings to salinity, sand burial and hydrologic regime provides valuable insight into the fundamental niche of A. germinans and thereby the potential for increased restoration success in coastal and back-barrier salt marshes. We subjected two age classes of A. germinans seedlings used in restoration (young seedlings of 6 or 12 months of age, and older seedlings of either 18 or 24 months of age) to abiotic stressors frequently encountered at coastal restoration sites: (1) elevated salinity levels, from 0 to 96 ppt, (2) sediment burial, from 0 to +20 cm, and (3) varying water levels, ranging from 0 cm to −60 cm. A. germinans seedlings displayed a non-linear response to each environmental factor, with greatest biomass occurring between low and moderate levels of stress or disturbance (i.e., between 24 and 48 ppt salinity, 0 to +10 cm burial, and −15 to −30 cm water level). The two age classes displayed similar physiological tolerances; however, older seedlings may confer an advantage due to greater total biomass and reserves, most notably in response to burial. We suggest that this refinement of the fundamental niche be utilized as a guideline for improved restoration success in micro-tidal environments within black mangrove’s range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar Coast Shelf Sci 76(1):1–13

    Article  Google Scholar 

  • Ball MC (1988) Ecophysiology of mangroves. Trees 2:129–142

    Article  Google Scholar 

  • Ball MC (2002) Interactive effects of salinity and irradiance on growth: implications for mangrove forest structure along salinity gradients. Trees 16:126–139

    Article  Google Scholar 

  • Barras JA, Beville S, Britsch D, Hartley S, Hawes S, Johnston J, Kemp P, Kinler Q, Martucci A, Porthouse J, Reed D, Roy K, Sapkota S, Suhayda J (2003) Historical and projected coastal Louisiana land changes: 1978-2050. USGS Open File Report 03-334

  • Cardona-Olarte P, Twilley RR, Krauss KW, Rivera-Monroy V (2006) Responses of neotropical mangrove seedlings grown in monoculture and mixed culture under treatments of hydroperiod and salinity. Hydrobiologia 569:325–341

    Article  Google Scholar 

  • Castaneda-Moya E, Rivera-Monroy VH, Twilley RR (2006) Mangrove zonation in the dry life zone of the Gulf of Fonesca, Honduras. Estuar Coast 29(5):751–764

    CAS  Google Scholar 

  • Chapman VJ (1976) Coastal vegetation. Pergamon Press, Oxford

    Google Scholar 

  • Chen R, Twilley RR (1998) A gap dynamic model of mangrove forest development along gradients of soil salinity and nutrient resources. J Ecol 86(1):37–51

    Article  Google Scholar 

  • Clarke PJ, Kerrigan RA, Westphal CJ (2001) Dispersal potential and early growth in 14 tropical mangroves: do early life history traits correlate with patterns of adult distribution? J Ecol 89(4):648–659

    Article  Google Scholar 

  • Constanza R, Mitsch JW, Day JW Jr (2006) A new vision for New Orleans and the Mississippi River delta: applying ecological economics and ecological engineering. Front Ecol Envir 4:465–472

    Article  Google Scholar 

  • Crewz D, Lewis RR (1991) Evaluation of historical attempts to establish emergent vegetation in marine wetlands in Florida. Florida Seagrant College Technical Paper No 60, Gainsville, FL

  • Delgado P, Hensel PF, Jimenez JA, Day JW (2001) The importance of propagule establishment and physical factors in mangrove distributional patterns in a Costa Rican estuary. Aquat Bot 71:157–178

    Article  Google Scholar 

  • Deng Z, Shuquing A, Congjiao Z, Lin C, Changfang Z, Yingbioa Z, Hongli L (2008) Sediment burial stimulates the growth and propagule production of Spartina alterniflora Loisel. Estuar Coast Shelf Sci 76:818–826

    Article  Google Scholar 

  • Dokka RK, Sella GF, Dixon TH (2006) Tectonic control of subsidence and southward displacement of southeast Louisiana with respect to stable North America. Geophys Res Lett 33:L23308

    Article  Google Scholar 

  • Duke NC, Ball MC, Ellison JC (1998) Factors influencing biodiversity and distributional gradients in mangroves. Glob Ecol Biogeogr Lett 7(1):29–47

    Article  Google Scholar 

  • Egerova J, Proffitt CE, Travis SE (2003) Facilitation of survival and growth of Baccharis halimifolia L. by Spartina alterniflora L. in a created Louisiana salt marsh. Wetlands 23(2):250–256

    Article  Google Scholar 

  • Ellison JC (1998) Impacts of sediment burial on mangroves. Mar Pollut Bull 37(8–12):420–426

    CAS  Google Scholar 

  • Ellison AM (2000) Mangrove restoration: do we know enough? Restor Ecol 8(3):219–229

    Article  Google Scholar 

  • Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecol Manage 17:71–84

    Article  Google Scholar 

  • Fearnley S (2008) The soil physical and chemical properties of restored and natural back-barrier salt marshes on Isles Dernieres, Louisiana. J Coast Res 24(1):84–94

    Article  CAS  Google Scholar 

  • Feller IC, McKee KL, Wigham DF, O’Neill JP (2002) Nitrogen vs phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochem 62:145–175

    Article  Google Scholar 

  • Field CD (1999) Rehabilitation of mangrove ecosystems: an overview. Mar Pollut Bull 27(8–12):383–392

    Article  Google Scholar 

  • Furukawa K, Wolanski E (1996) Sedimentation in mangrove forests. Mangroves Salt Marshes 1(1):3–10

    Article  Google Scholar 

  • Haddad NM, Holyoak M, Mata TM, Daves KF, Melbourne BA, Preston K (2008) Species’ traits predict the effects of disturbance and productivity on diversity. Ecol Lett 11:348–356

    Article  PubMed  Google Scholar 

  • Hester MW, Spalding EA, Franze CD (2005) Biological resources of the Louisiana coast: part 1. An overview of coastal plant communities of the Louisiana gulf shoreline. J Coast Res 44:134–145

    Google Scholar 

  • Hester MW, Henkel TK, Willis JM, Taylor P (2007) Enhancement of barrier island marsh creation through black mangrove propagule dispersal: a cost-effective alternative to planting seedlings. Final Report, NOAA/CREST (Coastal restoration enhancement through science and technology)

  • Hogarth PJ (1999) The biology of mangroves. Oxford University Press, Oxford

    Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold spring harbor symp. Quant Biol 22:415–427

    Google Scholar 

  • Khalil SM, Lee DM (2006) Restoration of Isles Dernieres, Louisiana: some reflections on morphodynamic approaches in the northern Gulf of Mexico to conserve coastal/marine systems. J Coast Res 39:65–71

    Google Scholar 

  • Kitaya Y, Jintana V, Piriyayotha S, Jaijing D, Yabunki K, Izutani S, Nishimiya A, Iwasaki M (2002) Early growth of seven mangrove species planted at different elevations in a Thai estuary. Trees 16:150–154

    Article  CAS  Google Scholar 

  • Krauss KW, Allen JA, Cahoon DR (2003) Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuar Coast Shelf Sci 56(2):251–259

    Article  Google Scholar 

  • Krauss KW, Doyle TW, Twilley RR, Rivera-Monroy VH, Sullivan JK (2006) Evaluating the relative contributions of hydroperiod and soil salinity on growth of south Florida mangroves. Hydrobiologia 569:311–324

    Article  CAS  Google Scholar 

  • Krauss KW, Lovelock CE, McKee KL, Lopez-Hoffman L, Ewe SML, Sousa WP (2008) Environmental drivers in mangrove establishment and early development: a review. Aquat Bot 89:105–127

    Article  Google Scholar 

  • Krauss KW, Doyle TW, Doyle TJ, Swarzenski CM, From AS, Day RH, Conner WH (2009) Water level observations in mangrove swamps during two hurricanes in Florida. Wetlands 29(1):142–149

    Article  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecology. Springer, New York

    Google Scholar 

  • Langlois E, Bonis A, Bouzille JB (2001) The response of Puccinellia maritima to burial: a key to understanding its role in salt-marsh dynamics? J Veg Sci 12:289–297

    Article  Google Scholar 

  • Lewis RR III (2005) Ecological engineering for successful management and restoration of mangrove forests. Ecol Eng 24:403–418

    Article  Google Scholar 

  • Lewis RR III, Hodgson AB, Mauseth GS (2005) Project facilitates the natural reseeding of mangrove forests (Florida). Ecol Rest 23(4):276–277

    Google Scholar 

  • Lugo AE, Snedaker SC (1974) The ecology of mangroves. Annu Rev Ecol Syst 5:39–64

    Article  Google Scholar 

  • Maun MA (1998) Adaptation of plants to burial in coastal sand dunes. Can J Bot 76:713–738

    Article  Google Scholar 

  • McKee KL (1993) Soil physicochemical patterns and mangrove species distribution-reciprocal effects? J Ecol 81:477–487

    Article  Google Scholar 

  • McKee KL (1995a) Interspecific variation in growth, biomass, partitioning, and defensive characteristics of neotropical mangrove seedlings: response to light and nutrient availability. Am J Bot 82(3):299–307

    Article  Google Scholar 

  • McKee KL (1995b) Seedling recruitment patterns in a Belizean mangrove forest: effects of establishment ability and physico-chemical factors. Oecologia 101:448–460

    Article  Google Scholar 

  • McKee KL, Faulkner PL (2000) Restoration of biogeochemical function in mangrove forests. Rest Ecol 8(3):247–259

    Article  Google Scholar 

  • McKee KL, Mendelssohn IA, Hester MW (1988) Reexamination of pore water sulfide concentrations and redox potentials near the aerial roots of Rhizophora mangle and Avicennia germinans. Am J Bot 75(9):1352–1359

    Article  Google Scholar 

  • McKee KL, Mendelssohn IA, Materne MD (2004) Acute salt marsh dieback in the Mississippi River deltaic plain: a drought-induced phenomenon? Glob Ecol Biogeogr 13:65–73

    Article  Google Scholar 

  • McKee KL, Cahoon DR, Feller IC (2007) Carribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob Ecol Biogeogr 16(5):545–556

    Article  Google Scholar 

  • McMillan C (1971) Environmental factors affecting seedling establishment of the black mangrove on the central Texas coast. Ecology 52(5):927–930

    Article  Google Scholar 

  • McMillan C, Sherrod CL (1986) The chilling tolerance of black mangrove, Avicennia germinans, from the Gulf of Mexico coast of Texas, Louisiana and Florida. Contrib Mar Sci 29:6–16

    Google Scholar 

  • Mendelssohn IA, Hester MW, Monteferrante FJ, Talbot F (1991) Experimental dune building and vegetative stabilization in a sand-deficient barrier island setting on the Louisiana coast, USA. J Coast Res 7(1):137–149

    Google Scholar 

  • Nicholls RJ, Wong PP, Burkett VR, et al (2007) Coastal systems and low-lying areas. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Odum EP (1959) Fundamentals of ecology, 2nd edn. Saunders, Philadelphia

    Google Scholar 

  • Odum EP, Finn JT, Franz EH (1979) Perturbation theory and the subsidy-stress gradient. BioScience 29:349–352

    Article  Google Scholar 

  • Patterson CS, Mendelssohn IA (1991) A comparison of physicochemical variables across plant zones in a mangal/salt marsh community in Louisiana. Wetlands 11(1):139–160

    Article  Google Scholar 

  • Patterson CS, McKee KL, Mendelssohn IA (1997) Effects of tidal inundation and predation on Avicennia germinans seedling establishment and survival in a sub-tropical mangal/salt marsh community. Mangroves Salt Marshes 1:103–111

    Article  Google Scholar 

  • Penfound WT, Hathaway ES (1938) Plant communities in the marshlands of southeastern Louisiana. Ecol Monogr 8:1–56

    Article  CAS  Google Scholar 

  • Penland S, Connor PF Jr, Cretini F, Westphal KA (2003) Assessment of five barrier island restoration projects in Louisiana. Coastal Sediments ‘03

  • Perry CL, Mendelssohn IA (2009) Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh. Wetlands 29(19):396–406

    Article  Google Scholar 

  • Pezeshki SR (1991) Root responses of flood tolerant and flood sensitive tree species to soil redox conditions. Trees 5:180–186

    Article  Google Scholar 

  • Pezeshki SR, DeLaune RD, Meeder JF (1997) Carbon assimilation and biomass partitioning in Avicennia germinans and Rhizophora mangle seedlings in response to soil redox conditions. Environ Exp Bot 37:161–171

    Article  CAS  Google Scholar 

  • Pianka ER (2000) Evolutionary ecology, 6th edn. Addison Wesley Longman, Inc, San Francisco

    Google Scholar 

  • Poorter H, Remkes C (1990) Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83:553–559

    Article  Google Scholar 

  • Primavera JH, Esteban JMA (2008) A review of mangrove rehabilitation in the Philippines: successes, failures and future prospects. Wetlands Ecol Manage 16:345–358

    Article  Google Scholar 

  • Rabinowitz D (1978) Dispersal properties of mangrove propagules. Biotropica 10(1):47–57

    Article  Google Scholar 

  • Rivera-Monroy V, Twilley RR, Mancera E, Alcantara-Eguren A, Castaneda-Moya E, Monroy OC, Reyes P, Restrepo P, Perdomo L, Campos E, Cotes G, Villoria E (2006) Adventures and misfortunes in Macondo: rehabilitation of the Cienaga Grande de Santa Marta Lagoon Complex, Colombia. Ecotropicos 19(2):72–93

    Google Scholar 

  • Rosati JD, Stone GW (2009) Geomorphic evolution of barrier islands along the northern U.S. Gulf of Mexico and implications for engineering design in barrier restoration. J Coast Res 25(1):8–22

    Article  Google Scholar 

  • Skopp JM (2000) Physical properties of primary particles. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp A3–A17

    Google Scholar 

  • Sobrado MA, Ewe SML (2006) Ecophysiological characteristics of Avicennia germinans and Lagunculara racemosa coexisting in a scrub mangrove forest at the Indian River Lagoon, Florida. Trees 20:679–687

    Article  Google Scholar 

  • Sousa WP, Kennedy PG, Mitchell BJ, Ordonez BM (2007) Supply-side ecology in mangroves: do propagule dispersal and seedling establishment explain forest structure? Ecol Monogr 77(1):53–76

    Article  Google Scholar 

  • Spalding EA, Hester MW (2007) Interactive effects of hydrology and salinity on oligohaline plant species productivity: implications of relative sea-level rise. Estuar Coast 30(2):214–225

    Google Scholar 

  • Stone GW, Zhang X, Sheremet A (2005) The role of barrier islands, muddy shelf and reefs in mitigating the wave field along coastal Louisiana. J Coast Res SI 44:40–55

    Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates, Inc, Sunderland

    Google Scholar 

  • Thibodeau FR, Nickerson NH (1986) Differential oxidation of mangrove substrate by Avicennia germinans and Rhizophora mangle. Am J Bot 73(4):512–516

    Article  Google Scholar 

  • Thom BG (1967) Mangrove ecology and deltaic geomorphology: Tabasco, Mexico. J Ecol 55(2):301–343

    Article  Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Turner RE, Baustian JJ, Swenson EM, Spicer SJ (2006) Wetland sedimentation from Hurricanes Katrina and Rita. Science 314:449–452

    Article  PubMed  CAS  Google Scholar 

  • Twilley RR, Rivera-Monroy VH (2005) Developing performance measures of mangrove wetlands using simulation models of hydrology, nutrient biogeochemistry, and community dynamics. J Coast Res 40:79–93

    Google Scholar 

  • Visser JM, Vermilion WG, Evers DE, Linscombe RG, Sasser CE (2005) Nesting habitat requirements for brown pelican and their management implications. J Coast Res 21(2):e27–e35

    Article  Google Scholar 

  • Yan Z, Weinquing W, Danling T (2007) Effect of different time of salt stress on growth and some physiological processes of Avicennia marina seedlings. Mar Biol 152:581–587

    Article  CAS  Google Scholar 

  • Young BM, Harvey LE (1996) A spatial analysis of the relationshiop between mangrove (Avicennia marina var. australasica) physiognomy and sediment accretion in the Hauraki Plains, New Zealand. Estuar Coast Shelf Sci 42:231–246

    Article  Google Scholar 

  • Zedler JB, Callaway JC (1999) Tracking wetland restoration: do mitigation sites follow desired trajectories? Rest Ecol 7(1):69–73

    Article  Google Scholar 

  • Zheng WJ, Wang WQ, Lin P (1999) Dynamics of element contents during the development of hypocotyles and leaves of certain mangrove species. J Exp Mar Biol Ecol 233:247–257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge research funding provided by NOAA CREST (Coastal Restoration Enhancement through Science and Technology) and graduate student support provided by the Louisiana Sea Grant and OCPR (Louisiana’s Office of Coastal Protection and Restoration) CSAP (Coastal Science Assistantship Program). Greenhouse and field support was enthusiastically provided by Jonathan Willis, Christine Pickens, Michael Dupuis, Ariel Broussard, and Kyle Nightingale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Alleman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alleman, L.K., Hester, M.W. Refinement of the fundamental niche of black mangrove (Avicennia germinans) seedlings in Louisiana: Applications for restoration. Wetlands Ecol Manage 19, 47–60 (2011). https://doi.org/10.1007/s11273-010-9199-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-010-9199-6

Keywords

Navigation