Skip to main content

Advertisement

Log in

Salmonella and Fecal Indicator Bacteria Survival in Soils Amended with Poultry Manure

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Minimizing the risks associated with manure-borne pathogenic microorganisms requires an understanding of microbial survival under realistic field conditions. The objective of this 3-year study was to assess the fate of Salmonella (SALM) and fecal indicator bacteria (FIB), E. coli (EC) and enterococci (ENT), in glacial till-derived soils, after application of poultry manure (PM) to cornfields under chisel-plowed (CP) or no-till (NT) management. From 2010 to 2012, soil samples were obtained each spring at 0–15- and 15–30-cm depths, to determine whether over-wintering of target bacteria had occurred. Sampling was followed by application of PM at low (PM1) and high (PM2) rates, based on nitrogen application goals. In 2012, soil samples were collected 21, 42, and 158 days after manure application (DAM), to assess the effects of time, application rates, and tillage on frequency of detection and concentrations of target bacteria. Despite dry conditions, all three target organisms were detected 158 DAM in 2012, and detection of these organisms in spring soil samples from manured plots in 2011 and 2012, nearly a full year after PM application, suggests that these organisms can persist in the soil environment long after application. The highest SALM concentration (790 cfu/g dry weight) and detection rate (25%) was found in PM2 plots 42 DAM. SALM were detected more frequently in CP plots (20%) compared to NT plots (5%). In contrast, tillage practices had no apparent effect on EC or ENT survival, as indicated by both soil, and decay rates estimated from tile-water bacteria concentrations. Decay rate constants (μ) ranged from 0.044 to 0.065 day−1 for EC and 0.010 to 0.054 day−1 for ENT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amin, M. G. M., Forslund, A., Bui, X. T., Juhler, R. K., Petersen, S. O., & Laegdsmand, M. (2013). Persistence and leaching potential of microorganisms and mineral N in animal manure applied to intact soil columns. Applied and Environmental Microbiology, 79, 535–542.

    Article  CAS  Google Scholar 

  • Arrus, K. M., Holley, R. A., Ominski, K. H., Tenuta, M., & Blank, G. (2006). Influence of temperature on Salmonella survival in hog manure slurry and seasonal temperature profiles in farm manure storage reservoirs. Livestock Science, 102, 226–236.

    Article  Google Scholar 

  • ASTM (1998) ASTM D2216: Standard test method for laboratory determination of water (moisture) content of soil and rock by mass. In 40 CFR 25841(a)(4)(iii)(A): American Society for Testing and Materials.

  • Bakhsh, A., Kanwar, R. S., & Karlen, D. L. (2005). Effects of liquid swine manure applications on NO3-N leaching losses to subsurface drainage water from loamy soils in Iowa. Agriculture Ecosystems & Environment, 109, 118–128.

    Article  Google Scholar 

  • Benham, B. L., Baffaut, C., Zeckoski, R. W., Mankin, K. R., Pachepsky, Y. A., Sadeghi, A. A., et al. (2006). Modeling bacteria fate and transport in watersheds to support TMDLs. Transactions of the ASABE, 49, 987–1002.

    Article  Google Scholar 

  • Berghaus, R. D., Thayer, S. G., Law, B. F., Mild, R. M., Hofacre, C. L., & Singer, R. S. (2013). Enumeration of Salmonella and Campylobacter spp. in environmental farm samples and processing plant carcass rinses from commercial broiler chicken flocks. Applied and Environmental Microbiology, 79, 4106–4114.

    Article  CAS  Google Scholar 

  • Brady, N.C. (1984) The nature and properties of soils: 750 pp.

  • Brandl, M. T., Rosenthal, B. M., Haxo, A. F., & Berk, S. G. (2005). Enhanced survival of Salmonella enterica in vesicles released by a soilborne Tetrahymena species. Applied and Environmental Microbiology, 71, 1562–1569.

    Article  CAS  Google Scholar 

  • CDC (2010). Multistate outbreak of human Salmonella enteritidis infections associated with shell eggs. URL http://www.cdc.gov/salmonella/enteritidis/index.htmL.

  • Chandler, D. S., & Craven, J. A. (1980). Relationship of soil-moisture to survival of Escherichia coli and Salmonella-Typhimurium in soils. Australian Journal of Agricultural Research, 31, 547–555.

    Article  Google Scholar 

  • Coelho, B. R. B., Roy, R. C., Topp, E., & Lapen, D. R. (2007). Tile-water quality following liquid swine manure application into standing corn. Journal of Environmental Quality, 36, 580–587.

    Article  CAS  Google Scholar 

  • Cook, K. L., Netthisinghe, A. M. P., & Gilfillen, R. A. (2014). Detection of pathogens, indicators, and antibiotic resistance genes after land application of poultry litter. Jounal of Environmental Quality, 43, 1546–1558.

    Article  CAS  Google Scholar 

  • Crane, S. R., & Moore, J. A. (1986). Modeling enteric bacterial die-off—a review. Water Air and Soil Pollution, 27, 411–439.

    Article  Google Scholar 

  • Dale, K., Kirk, M., Sinclair, M., Hall, R., & Leder, K. (2010). Reported waterborne outbreaks of gastrointestinal disease in Australia are predominantly associated with recreational exposure. Australian and New Zealand Journal of Public Health, 34, 527–530.

    Article  Google Scholar 

  • Eaton, A. D., Clesceri, L. S., Greenberg, A. E., & Franson, M. A. H. (1995). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association, American Water Works Association, and Water Environment Federation.

    Google Scholar 

  • EPA. (2002) Method 1603: Escherichia coli (E. coli) in water by membrane filtration using modified membrane-thermotolerant Escherichia coli agar (modified mTEC) in. Washington D.C.: US Environmental Protection Agency.

  • Erickson, M. C., Habteselassie, M. Y., Liao, J., Webb, C. C., Mantripragada, V., Davey, L. E., & Doyle, M. P. (2014). Examination of factors for use as potential predictors of human enteric pathogen survival in soil. Journal of Applied Microbiology, 116, 335–349.

    Article  CAS  Google Scholar 

  • Farhangi, M. B., Sinegani, A. A. S., Mosaddeghi, M. R., Unc, A., & Khodakaramian, G. (2013). Impact of calcium carbonate and temperature on survival of Escherichia coli in soil. Journal of Environmental Management, 119, 13–19.

    Article  CAS  Google Scholar 

  • FDA (2012) Bad bug book, foodborne pathogenic microorganisms and natural toxins. Food & Drug Administration.

  • Garcia, R., Baelum, J., Fredslund, L., Santorum, P., & Jacobsen, C. S. (2010). Influence of temperature and predation on survival of Salmonella enterica serovar Typhimurium and expression of invA in soil and manure-amended soil. Applied and Environmental Microbiology, 76, 5025–5031.

    Article  CAS  Google Scholar 

  • Garder, J. L., Moorman, T. B., & Soupir, M. L. (2014). Transport and persistence of tylosin-resistant enterococci, erm genes, and tylosin in soil and drainage water from fields receiving swine manure. Journal of Environmental Quality, 43, 1484–1493.

    Article  Google Scholar 

  • Gessel, P. D., Hansen, N. C., Goyal, S. M., Johnston, L. J., & Webb, J. (2004). Persistence of zoonotic pathogens in surface soil treated with different rates of liquid pig manure. Applied Soil Ecology, 25, 237–243.

    Article  Google Scholar 

  • Graham, J. P., Evans, S. L., Price, L. B., & Silbergeld, E. K. (2009). Fate of antimicrobial-resistant enterococci and staphylococci and resistance determinants in stored poultry litter. Environmental Research, 109, 682–689.

    Article  CAS  Google Scholar 

  • Guan, T. Y., & Holley, R. A. (2003). Pathogen survival in swine manure environments and transmission of human enteric illness—a review (vol 32, pg 383, 2003). Journal of Environmental Quality, 32, 1153–1153.

    Article  CAS  Google Scholar 

  • Hanna, H. M., & Richard, T. L. (2008). Calibration and uniformity of solid manure spreaders. Ames: Iowa State University Extension and Outreach publication Book 146-PM 1941.

    Google Scholar 

  • Hoang, T.T.T., Soupir, M.L., Liu, P., and Bhandari, A. (2013) Occurrence of tylosin-resistant enterococci in swine manure and tile drainage systems under no-till management. Water Air and Soil Pollution 224.

  • Holley, R. A., Arrus, K. M., Ominski, K. H., Tenuta, M., & Blank, G. (2006). Salmonella survival in manure-treated soils during simulated seasonal temperature exposure. Journal of Environmental Quality, 35, 1170–1180.

    Article  CAS  Google Scholar 

  • Hruby, C. E., Soupir, M. L., Moorman, T. B., Shelley, M., & Kanwar, R. S. (2016). Effects of tillage and poultry manure application rates on Salmonella and fecal indicator bacteria concentration in tiles draining Des Moines Lobe soils. Journal of Environmental Management, 171, 60–79.

    Article  CAS  Google Scholar 

  • Hutchison, M. L., Walters, L. D., Avery, S. M., Synge, B. A., & Moore, A. (2004a). Levels of zoonotic agents in British livestock manures. Letters in Applied Microbiology, 39, 207–214.

    Article  CAS  Google Scholar 

  • Hutchison, M. L., Walters, L. D., Moore, A., Crookes, K. M., & Avery, S. M. (2004b). Effect of length of time before incorporation on survival of pathogenic bacteria present in livestock wastes applied to agricultural soil. Applied and Environmental Microbiology, 70, 5111–5118.

    Article  CAS  Google Scholar 

  • Ibekwe, A. M., Papiernik, S. K., Grieve, C. M., & Yang, C. H. (2010). Influence of fumigants on soil microbial diversity and survival of E. coli O157:H7. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 45, 416–426.

    Article  CAS  Google Scholar 

  • IDEP (2014). Iowa daily erosion project. Website Accessed 16 July 2015, URL http://wepp.mesonet.agron.iastate.edu/GIS/sm.phtmL.

  • Iowa Environmental Mesonet (2014). Iowa State University. Available at: https://mesonet.agron.iastate.edu/. Accessed 20 Feb 2007.

  • Islam, M., Morgan, J., Doyle, M. P., Phatak, S. C., Millner, P., & Jiang, X. P. (2004). Fate of Salmonella enterica serovar Typhimurium on carrots and radishes grown in fields treated with contaminated manure composts or irrigation water. Applied and Environmental Microbiology, 70, 2497–2502.

    Article  CAS  Google Scholar 

  • Jacobsen, C. S., & Bech, T. B. (2012). Soil survival of Salmonella and transfer to freshwater and fresh produce. Food Research International, 45, 557–566.

    Article  Google Scholar 

  • Jangid, K., Williams, M. A., Franzluebbers, A. J., Sanderlin, J. S., Reeves, J. H., Jenkins, M. B., et al. (2008). Inorganic fertilizer and poultry-litter manure amendments alter the soil microbial communities in agricultural systems. Abstracts of the General Meeting of the American Society for Microbiology, 108, 411.

    Google Scholar 

  • Jenkins, M. B., Truman, C. C., Siragusa, G., Line, E., Bailey, J. S., Frye, J., et al. (2008). Rainfall and tillage effects on transport of fecal bacteria and sex hormones 17 beta-estradiol and testosterone from broiler litter applications to a Georgia Piedmont Ultisol. Science of the Total Environment, 403, 154–163.

    Article  CAS  Google Scholar 

  • Jenkins, M. B., Endale, D. M., Schomberg, H. H., & Sharpe, R. R. (2012). Fecal bacteria and sex hormones in soil and runoff from cropped watersheds amended with poultry litter. Science of the Total Environment, 416, 541–541.

    Article  CAS  Google Scholar 

  • Jiang, X. P., Morgan, J., & Doyle, M. P. (2002). Fate of Escherichia coli O157: H7 in manure-amended soil. Applied and Environmental Microbiology, 68, 2605–2609.

    Article  CAS  Google Scholar 

  • Jn-Baptiste, M., Sistani, K. R., & Tewolde, H. (2013). Poultry litter time and method of application effects on corn yield. Soil Science, 178, 109–119.

    Article  CAS  Google Scholar 

  • Kjaer, J., Olsen, P., Bach, K., Barlebo, H. C., Ingerslev, F., Hansen, M., & Sorensen, B. H. (2007). Leaching of estrogenic hormones from manure-treated structured soils. Environmental Science & Technology, 41, 3911–3917.

    Article  Google Scholar 

  • Kraft, D. J., Olechows, C., Berkowit, J., & Finstein, M. S. (1969). Salmonella in wastes produced at commercial poultry farms. Applied Microbiology, 18, 703–707.

    CAS  Google Scholar 

  • Lang, N. L., & Smith, S. R. (2007). Influence of soil type, moisture content and biosolids application on the fate of Escherichia coli in agricultural soil under controlled laboratory conditions. Journal of Applied Microbiology, 103, 2122–2131.

    Article  CAS  Google Scholar 

  • Liang, Z., He, Z., Powell, C. A., & Stoffella, P. J. (2011). Survival of Escherichia coli in soil with modified microbial community composition. Soil Biology & Biochemistry, 43, 1591–1599.

    Article  CAS  Google Scholar 

  • McLaughlin, M. R., Brooks, J. P., Adeli, A., & Tewolde, H. (2011). Nutrients and bacteria in common contiguous Mississippi soils with and without broiler litter fertilization. Journal of Environmental Quality, 40, 1322–1331.

    Article  CAS  Google Scholar 

  • Messer, J. W., & Dufour, A. P. (1998). A rapid, specific membrane filtration procedure for enumeration of enterococci in recreational water. Applied and Environmental Microbiology, 64, 678–680.

    CAS  Google Scholar 

  • Moore, P.A., Jr. (1998) Best management practices for poultry manure utilization that enhance agricultural productivity and reduce pollution. In Animal waste utilization: effective use of manure as a soil resource. Ed. J.L. Hatfield and B.A. Stewart. pp. 89–123.

  • Morinigo, M. A., Cornax, R., Munoz, M. A., Romero, P., & Borrego, J. J. (1990). Relationships between Salmonella spp and indicator microorganisms in polluted natural-waters. Water Research, 24, 117–120.

    Article  Google Scholar 

  • Nguyen, H. Q., Kanwar, R. S., Hoover, N. L., Dixon, P., Hobbs, J., Pederson, C., & Soupir, M. L. (2013). Long-term effects of poultry manure application on nitrate leaching in tile drain water. Transactions of the ASABE, 56, 91–101.

    Article  CAS  Google Scholar 

  • NRCS (2014). Soil climate analysis network. United States Department of Agriculture. Website accessed 15 July 2014, URL: http://www.wcc.nrcs.usda.gov/nwcc/site?sitenum=2031&state=ia.

  • Olson, V. M., Swaminathan, B., Pratt, D. E., & Stadelman, W. J. (1981). Effect of 5 cycle rapid freeze-thaw treatment in conjunction with various chemicals for the reduction of Salmonella-Typhimurium. Poultry Science, 60, 1822–1826.

    Article  CAS  Google Scholar 

  • Pappas, E. A., Kanwar, R. S., Baker, J. L., Lorimor, J. C., & Mickelson, S. (2008). Fecal indicator bacteria in subsurface drain water following swine manure application. Transactions of the ASABE, 51, 1567–1573.

    Article  Google Scholar 

  • Payment, P., & Locas, A. (2011). Pathogens in water: value and limits of correlation with microbial indicators. Ground Water, 49, 4–11.

    Article  CAS  Google Scholar 

  • Polo, F., Figueras, M. J., Inza, I., Sala, J., Fleisher, J. M., & Guarro, J. (1998). Relationship between presence of Salmonella and indicators of faecal pollution in aquatic habitats. FEMS Microbiology Letters, 160, 253–256.

    Article  CAS  Google Scholar 

  • Polo, F., Figueras, M. J., Inza, I., Sala, J., Fleisher, J. M., & Guarro, J. (1999). Prevalence of Salmonella serotypes in environmental waters and their relationships with indicator organisms. Antonie Van Leeuwenhoek, 75, 285–292.

    Article  CAS  Google Scholar 

  • Pruss, A. (1998). Review of epidemiological studies on health effects from exposure to recreational water. International Journal of Epidemiology, 27, 1–9.

    Article  CAS  Google Scholar 

  • Rodriguez, A., Pangloli, P., Richards, H. A., Mount, J. R., & Draughon, F. A. (2006). Prevalence of Salmonella in diverse environmental farm samples. Journal of Food Protection, 69, 2576–2580.

    Article  Google Scholar 

  • Rogers, S. W., & Haines, J. (2005). Detecting and mitigating the environmental impact of fecal pathogens originating from confined animal feeding operations: Review. Report # EPA/600/R-06/021. Cincinnati: Environmental Protection Agency (ed.).

    Google Scholar 

  • Rogers, S. W., Donnelly, M., Peed, L., Kelty, C. A., Mondal, S., Zhong, Z. R., & Shanks, O. C. (2011). Decay of bacterial pathogens, fecal indicators, and real-time quantitative PCR genetic markers in manure-amended soils. Applied and Environmental Microbiology, 77, 4839–4848.

    Article  CAS  Google Scholar 

  • Rothrock, M. J., Frantz, J. M., & Burnett, S. (2012). Effect of volumetric water content and clover (Trifolium incarnatum) on the survival of Escherichia coli O157:H7 in a soil matrix. Current Microbiology, 65, 272–283.

    Article  CAS  Google Scholar 

  • Samarajeewa, A. D., Glasauer, S. M., Lauzon, J. D., O’Halloran, I. P., Parkin, G. W., & Dunfield, K. E. (2012). Bacterial contamination of tile drainage water and shallow groundwater under different application methods of liquid swine manure. Canadian Journal of Microbiology, 58, 668–677.

    Article  CAS  Google Scholar 

  • Sawyer, J., Nafziger, E., Randall, G., Bundy, L., Rehm, G., & Joern, B. (2006). Concepts and rationale for regional nitrogen rate guidelines for corn. Ames: Iowa State University Extension Bulletin PM-2015.

    Google Scholar 

  • Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M.-A., Roy, S. L., et al. (2011). Foodborne illness acquired in the United States—major pathogens. Emerging Infectious Diseases, 17, 7–15.

    Article  Google Scholar 

  • Semenov, A. V., van Overbeek, L., & van Bruggen, A. H. C. (2009). Percolation and survival of Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium in soil amended with contaminated dairy manure or slurry. Applied and Environmental Microbiology, 75, 3206–3215.

    Article  CAS  Google Scholar 

  • Sharpley, A., Meisinger, J. J., Breeuwsma, A., Sims, J. T., Daniel, T. C., & Schepers, J. S. (1997). Impacts of animal manure management on ground and surface water quality. In J. L. Hatfield & B. A. Stewart (Eds.), Animal waste utilization: effective use of manure as a soil resource (pp. 173–242). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Skaggs, R. W., Breve, M. A., & Gilliam, J. W. (1994). Hydrologic and water-quality impacts of agricultural drainage. Critical Reviews in Environmental Science and Technology, 24, 1–32.

    Article  CAS  Google Scholar 

  • Terzich, M., Pope, M. J., Cherry, T. E., Hollinger, J. (2000). Survey of pathogens in poultry litter in the United States. Journal of Applied Poultry Research, 9(3), 287–291.

  • Tyrrel, S. F., & Quinton, J. N. (2003). Overland flow transport of pathogens from agricultural land receiving faecal wastes. Journal of Applied Microbiology, 94, 87S–93S.

    Article  Google Scholar 

  • UDSA-NASS (2014) Chickens and eggs. United States Department of Agriculture National Agricultural Statistic Service Document #1948–9063, URL http://usda01.library.cornell.edu/usda/current/ChicEggs/ChicEggs-03-21-2014.txt.

  • Unc, A., & Goss, M. J. (2004). Transport of bacteria from manure and protection of water resources. Applied Soil Ecology, 25, 1–18.

    Article  Google Scholar 

  • USEPA. (2013). Review of contaminants in livestock and poultry manure and implications for water quality. Washington, DC: Environmental Protection Agency document #820-R-13-002.

    Google Scholar 

  • van Elsas, J. D., Hill, P., Chronakova, A., Grekova, M., Topalova, Y., Elhottova, D., & Kristufek, V. (2007). Survival of genetically marked Escherichia coli O157: H7 in soil as affected by soil microbial community shifts. ISME Journal, 1, 204–214.

    Article  Google Scholar 

  • WHO. (2012). Animal waste, water quality and human health. London: IWA Publishing.

    Google Scholar 

  • WHO (2013). Salmonella (Non-typoidal). Website accessed 21 July 2014, URL: http://www.who.int/mediacentre/factsheets/fs139/en/.

  • Yamahara, K. M., Walters, S. P., & Boehm, A. B. (2009). Growth of enterococci in unaltered, unseeded beach sands subjected to tidal wetting. Applied and Environmental Microbiology, 75, 1517–1524.

    Article  CAS  Google Scholar 

  • You, Y. W., Rankin, S. C., Aceto, H. W., Benson, C. E., Toth, J. D., & Dou, Z. X. (2006). Survival of Salmonella enterica serovar Newport in manure and manure-amended soils. Applied and Environmental Microbiology, 72, 5777–5783.

    Article  CAS  Google Scholar 

  • Zibilske, L. M., & Weaver, R. W. (1978). Effect of environmental factors on survival of Salmonella-Typhimurium in soil. Journal of Environmental Quality, 7, 593–597.

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by Iowa State University and a 3-year grant from the Iowa Egg Council as part of a long-term study of the impacts of poultry manure application on soil and water quality. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Iowa Egg Council. Numerous graduate and undergraduate students at Iowa State University and volunteers assisted with sample collection and analyses, including Ross Tuttle, Kendal Agee, Amanda Homan, Jason Garder, Nick Terhall, and Conrad Brendel. The use of specific products in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the USDA or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Soupir.

Electronic supplementary material

ESM 1

(DOCX 13.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hruby, C.E., Soupir, M.L., Moorman, T.B. et al. Salmonella and Fecal Indicator Bacteria Survival in Soils Amended with Poultry Manure. Water Air Soil Pollut 229, 32 (2018). https://doi.org/10.1007/s11270-017-3667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3667-z

Keywords

Navigation