Skip to main content
Log in

Synthesis of TiO2–Reduced Graphene Oxide Nanocomposites for Efficient Adsorption and Photodegradation of Herbicides

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The elimination of herbicides in aquatic environment is influenced by various biotic or abiotic factors. Thus, efficient, more applicable, and flexible methods are in demand. Photodegradation has been applied to remove three main types of herbicides, phenylurea, triazine, and chloroacetanilide, from water, based on a series of TiO2–reduced graphene oxide nanocomposites. Experimental results showed that the three types of herbicides could be mostly removed under simulated sunlight irradiation for 5 h with the as-prepared photocatalyst. Compared with pure TiO2 or P25, the photodegradation efficiency has been markedly increased. Thus, the present work could promote a new strategy dealing with the pollution of herbicides in aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhavan, O., & Ghaderi, E. (2009). Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. Journal of Physical Chemistry C, 113, 20214–20220.

    Article  CAS  Google Scholar 

  • Chang, Y. N., Ou, X. M., Zeng, G. M., Gong, J. L., Deng, C. H., Jiang, Y., Liang, J., Yuan, G. Q., Liu, H. Y., & He, X. (2015). Synthesis of magnetic graphene oxide–TiO2 and their antibacterial properties under solar irradiation. Applied Surface Science, 343, 1–10.

    Article  CAS  Google Scholar 

  • Chen, C., Cai, W. M., Long, M. C., Zhou, B. X., Wu, Y. H., Wu, D. Y., & Feng, Y. J. (2010). Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano, 4, 6425–6432.

    Article  CAS  Google Scholar 

  • Ding, Y. H., Zhang, P., Zhuo, Q., Ren, H. M., Yang, Z. M., & Jiang, Y. (2011). A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation. Nanotechnology, 22, 21560121.

    Google Scholar 

  • Dong, X. F., Liang, S. X., Shi, Z. H., & Sun, H. W. (2016). Development of multi-residue analysis of herbicides in cereal grain by ultra-performance liquid chromatography–electrospray ionization-mass spectrometry. Food Chemistry, 192, 432–440.

    Article  CAS  Google Scholar 

  • Ellegaard-Jensen, L., Aamand, J., Kragelund, B. B., Johnsen, A. H., & Rosendahl, S. (2013). Strains of the soil fungus Mortierellas how different degradation potentials for the phenylurea herbicide diuron. Biodegradation, 24, 765–774.

    Article  CAS  Google Scholar 

  • Elsayed, O. F., Maillard, E., Vuilleumier, S., Millet, M., & Imfeld, G. (2015). Degradation of chloroacetanilide herbicides and bacterial community composition in lab-cale wetlands. Science of the Total Environment, 520, 222–231.

    Article  CAS  Google Scholar 

  • Englert, J. M., Röhrl, J., Schmidt, C. D., Graupner, R., Hundhausen, M., Hauke, F., & Hirsch, A. (2009). Soluble graphene: generation of aqueous graphene solutions aided by a perylenebisimide-based bolaamphiphile. Advanced Materials, 21, 4265–4269.

    Article  CAS  Google Scholar 

  • Evgenidou, E., & Fytianos, K. (2002). Photodegradation of triazine herbicides in aqueous solutions and natural waters. Journal of Agricultural and Food Chemistry, 50, 6423–6427.

    Article  CAS  Google Scholar 

  • Gao, Y. Y., Pu, X. P., Zhang, D. F., Ding, G. Q., Shao, X., & Ma, J. (2012). Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange. Carbon, 50, 4093–4101.

    Article  CAS  Google Scholar 

  • Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 9, 1–12.

    Article  CAS  Google Scholar 

  • Grube, A., Donaldson, D., Kiely, T., & Wu, L. (2011). Pesticides industry sales and usage. US: Environmental Protection Agency.

    Google Scholar 

  • Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339–1339.

    Article  CAS  Google Scholar 

  • Huovinen, M., Loikkanen, J., Naarala, J., & Vähäkangas, K. (2015). Toxicity of diuron in human cancer cells. Toxicology in Vitro, 29, 1577–1586.

    Article  CAS  Google Scholar 

  • Jang, H. D., Kim, S. K., Chang, H., Roh, K. M., Choi, J. W., & Huang, J. X. (2012). A glucose biosensor based on TiO2-graphene composite. Biosensors & Bioelectronics, 38, 184–188.

    Article  CAS  Google Scholar 

  • Jensen, G. V., Bremholm, M., Lock, N., Deen, G. R., Jensen, T. R., Iversen, B. B., Niederberger, M., Pedersen, J. S., & Birkedal, H. (2010). Anisotropic crystal growth kinetics of anatase TiO2 nanoparticles synthesized in a nonaqueous medium. Chemistry of Materials, 22, 6044–6055.

    Article  CAS  Google Scholar 

  • Liu, X. P., Tang, Y. H., Luo, S. L., Wang, Y., Zhang, X. L., Chen, Y., & Liu, C. B. (2013). Reduced graphene oxide and CuInS2 co-decorated TiO2 nanotube arrays for efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water. Journal of Photochemistry and Photobiology A-Chemistry, 262, 22–27.

    Article  CAS  Google Scholar 

  • Liu, X. L., Wang, C., Wu, Q. H., & Wang, Z. (2015). Metal-organic framework-templated synthesis of magnetic nanoporous carbon as an efficient absorbent for enrichment of phenylurea herbicides. Analytica Chimica Acta, 870, 67–74.

    Article  CAS  Google Scholar 

  • Main, A. R., Headle, J. V., Peru, K. M., Michel, N. L., Cessna, A. J., & Morrissey, C. A. (2014). Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada’s prairie pothole region. PLoS ONE, 9, e91821.

    Article  CAS  Google Scholar 

  • Moisset, S., Tiam, S. K., Feurtet-Mazel, A., Morin, S., Delmas, F., Mazzella, N., & Gonzalez, P. (2015). Genetic and physiological responses of three freshwater diatoms to realistic diuron exposures. Environmental Science and Pollution Research, 22, 4046–4055.

    Article  CAS  Google Scholar 

  • Nguyen-Phan, T., Pham, V. H., Shin, E. W., Pham, H. D., Kim, S., Chung, J. S., Kim, E. J., & Hur, S. H. (2011). The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide nanocomposites. Chemical Engineering Journal, 170, 226–232.

    Article  CAS  Google Scholar 

  • Paule, A., Biaz, A., Leflaive, J., Lawrence, J. R., & Rols, J. L. (2015). Genetic and physiological responses of three freshwater diatoms to realistic diuron exposures. Water, Air, and Soil Pollution, 226, 10.1007/s11270-014-2282-5.

  • Perera, S. D., Mariano, R. G., Vu, K., Nour, N., Seitz, O., Chabal, Y., & Balkus, K. J. (2012). Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catalysis, 2, 949–956.

    Article  CAS  Google Scholar 

  • Ramadoss, A., & Kim, S. J. (2013). Improved activity of a graphene-TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon, 63, 434–445.

    Article  CAS  Google Scholar 

  • Shah, M. A. S. A., Park, A. R., Zhang, K., Park, J. H., & Yoo, P. J. (2012). Green synthesis of biphasic-TiO2 reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Applied Materials & Interfaces, 4, 3893–3901.

    Article  CAS  Google Scholar 

  • Shao, Y., Cao, C. S., Chen, S. L., He, M., Fang, J. L., Chen, J., Li, X. F., & Li, D. Z. (2015). Investigation of nitrogen doped and carbon species decorated TiO2 with enhanced visible light photocatalytic activity by using chitosan. Applied Catalysis, B: Environmental, 179, 344–351.

    Article  CAS  Google Scholar 

  • Tang, Y. H., Zhang, G., Liu, C. B., Luo, S. L., Xu, X. L., Chen, L., & Wang, B. G. (2013). Magnetic TiO2-graphene composite as a high-performance and recyclable platform for efficient photocatalytic removal of herbicides from water. Journal of Hazardous Materials, 252–253, 115–122.

    Article  CAS  Google Scholar 

  • Wang, F., & Zhang, K. (2011). Reduced graphene oxide–TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. Journal of Molecular Catalysis A: Chemical, 345, 101–107.

    Article  CAS  Google Scholar 

  • Wang, P. X., Xian, J. J., Chen, J., He, Y. H., Wang, J. X., Li, W. J., Shao, Y., & Li, D. Z. (2014). Preparation, photocatalytic activity, and mechanism of Cd2Sb2O6.8-graphene composite. Applied Catalysis, B: Environmental, 144, 644–653.

    Article  CAS  Google Scholar 

  • Williams, G., Seger, B., & Kamat, P. V. (2008). TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2, 1487–1491.

    Article  CAS  Google Scholar 

  • Yang, M. Q., Zhang, N., & Xu, Y. J. (2013). Synthesis of fullerene−, carbon nanotube−, and graphene−TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study. ACS Applied Materials & Interfaces, 5, 1156–1164.

    Article  CAS  Google Scholar 

  • Zhang, H., Lv, X. J., Li, Y. M., Wang, Y., & Li, J. H. (2010). P25-graphene composite as a high performance photocatalyst. ACS Nano, 4, 380–386.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Scientific and Technology Supporting Program of China (Grant No. 2015BAK45B01), the National Natural Science Foundation of China (Nos. 21572209), the National Science Foundation for Fostering Talents in Basic Research of China (Grant No. J1210064), and the National Instrumentation Program of China (Grant No. 2013YQ510391).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongqiang Ma or Yong Ye.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 8179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Hong, H., Wu, X. et al. Synthesis of TiO2–Reduced Graphene Oxide Nanocomposites for Efficient Adsorption and Photodegradation of Herbicides. Water Air Soil Pollut 227, 21 (2016). https://doi.org/10.1007/s11270-015-2719-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2719-5

Keywords

Navigation