Skip to main content
Log in

Relationships Between Manure Particle and E. coli Transport from Direct Fecal Deposits Under Steady-State Flows

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Pathogens are the leading cause of water quality impairments as defined by the US Environmental Protection Agency and their transport within water bodies is poorly understood. Because of this, watershed-scale, water quality models often have poor bacterial prediction capabilities. To improve the understanding of in-stream bacterial transport, a cow pie was deposited in a recirculating flume with flows ranging from 0.0102 to 0.0176 m3 s−1. Water samples were collected and analyzed for Escherichia coli concentration, E. coli attached fraction, and turbidity. E. coli concentrations ranged from 4.72 × 103 to 1.70 × 105 CFU 100 mL−1 and turbidity ranged from 1.93 to 369 NTU over both locations and all times. The percentage of E. coli attached to particles ranged from an average of 2.9 to 31 % downstream of the fecal deposition point. Spearman correlation analysis demonstrated that bacteria concentrations were significantly related with water depth (ρ = 0.128, p = 0.018), and the concentration of attached bacteria was significantly correlated with both the total concentration of E. coli (ρ = 0.4081, p = 0.009) and turbidity (ρ = 0.3627, p = 0.0214). This analysis is useful to indicate parameters that should be considered when monitoring or predicting bacteria transport in streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baffaut, C., & Sadeghi, A. (2010). Bacteria modeling with SWAT for assessment and remediation studies: a review. Transactions of the ASABE, 53(5), 1585–1594.

    Google Scholar 

  • Benham, B. L., Baffaut, C., Zeckoski, R. W., Mankin, K. R., Pachepsky, Y. A., Sadeghi, A. B., Brannan, K. M., Soupir, M. L., & Habersack, M. J. (2006). Modeling bacteria fate and transport in watersheds to support TMDLs. Transactions of the ASABE, 49(4), 987–1002.

    Google Scholar 

  • Byers, H. L., Cabrera, M. L., Matthews, M. K., Franklin, D. H., Andrae, J. G., Radcliffe, D. E., McCann, M. A., Kuykendall, H. A., Hoveland, C. S., & Calvert, V. H., II. (2005). Phosphorus, sediment, and Escherichia coli loads in unfenced streams of the Georgia Piedmont, USA. Journal of Environmental Quality, 34, 2293–2300.

    Article  CAS  Google Scholar 

  • Characklis, G. W., Dilts, M. J., Simmons, O. D., III, Likirdopulos, C. A., Krometis, L.-A. H., & Sobsey, M. D. (2005). Microbial partitioning to settleable particles in stormwater. Water Research, 39, 1773–1782.

    Article  CAS  Google Scholar 

  • Cho, K. H., Pachepsky, Y. A., Kim, J. H., Guber, A. K., Shelton, D. R., & Rowland, R. (2010). Release of Esherichia coli from the bottom sediment in a first-order creek: experiment and reach-specific modeling. Journal of Hydrology, 391, 322–332.

    Article  Google Scholar 

  • Clesceri, L. S., Greenburg, A. E., & Eaton, A. D. (Eds.). (1998). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.

    Google Scholar 

  • Collins, R. (2004). Wetlands and aquatic processes: fecal contamination of pastoral wetlands. Journal of Environmental Quality, 33, 1912–1918.

    Article  CAS  Google Scholar 

  • Davies-Colley, R. J., Nagels, J. W., Smith, R. A., Young, R. G., & Phillips, C. J. (2004). Water quality impact of a dairy cow herd crossing a stream. New Zealand Journal of Marine and Freshwater Research, 38, 569–576.

    Article  Google Scholar 

  • Fries, S. J., Characklis, G. W., & Nobel, R. T. (2006). Attachment of fecal indicator bacteria to particles in the Neuse River Estuary, N.C. Journal of Environmental Engineering, 132(10), 1338–1345.

    Article  CAS  Google Scholar 

  • Guber, A. K., Pachepsky, Y. A., Shelton, D. R., & Yu, O. (2007). Effect of bovine manure on fecal coliform attachment to soil and soil particles of different sizes. Applied and Environmental Microbiology, 73, 3363–3370.

    Article  CAS  Google Scholar 

  • Jamieson, R. C., Joy, D. M., Lee, H., Kostaschuk, R., & Gordon, R. J. (2005). Resuspension of sediment-associated Escherichia coli in a natural stream. Journal of Environmental Quality, 34, 581–589.

    Article  CAS  Google Scholar 

  • Krometis, L. A. H., Characklis, G. W., Simmons, O. D., Dilts, M. J., Likirdopulos, C. A., & Sobsey, M. D. (2007). Intra-storm variability in microbial partitioning and microbial loading rates. Water Research, 41, 506–516.

    Article  CAS  Google Scholar 

  • Krometis, L. A. H., Dillaha, T. A., Love, N. G., & Mostaghimi, S. (2009). Evaluation of a filtration/dispersion method for enumeration of particle-associated Escherichia coli. Journal of Environmental Quality, 38(3), 980–986.

    Article  CAS  Google Scholar 

  • Line, D. E. (2003). Changes in a stream’s physical and biological conditions following livestock exclusion. Transactions of ASAE, 46(2), 287–293.

    Google Scholar 

  • Luef, B., Aspetsberger, F., Hein, T., Huber, F., & Peduzzi, P. (2007). Impact of hydrology on free-living and particle-associated microorganisms in a river floodplain system (Danube, Austria). Freshwater Biology, 52, 1043–1057.

    Article  Google Scholar 

  • Mahler, B. J., Personne, J. C., Lods, G. F., & Drogue, C. (2000). Transport of free and particulate-associated bacteria in karst. Journal of Hydrology, 238, 179–193.

    Article  Google Scholar 

  • McDaniel, R.L., M.L. Soupir, Tuttle, R., and A. Cervantes (2013) Release, dispersion, and resuspension of E. coli from direct fecal deposits under controlled flows. Journal of the American Water Resources Association. doi:10.1111/jawr.12022

  • Muirhead, R. W., Davies-Colley, R. J., Donnison, A. M., & Nagels, J. W. (2004). Faecal bacteria yields in artificial flood events: quantifying in-stream stores. Water Research, 38, 1215–1224.

    Article  CAS  Google Scholar 

  • Nagels, J. W., Davies-Colley, R. J., Donnison, A. M., & Muirhead, R. W. (2002). Faecal contamination over flood events in a pastoral agricultural stream in New Zealand. Water Science and Technology, 45(12), 45–52.

    CAS  Google Scholar 

  • Oliver, D. M., Heathwaite, L., Haygarth, P. M., & Clegg, C. D. (2005). Transfer of Escherichia coli to water from drained and undrained grassland after grazing. Journal of Environmental Quality, 34, 918–925.

    Article  CAS  Google Scholar 

  • Pachepsky, Y. A., Sadeghi, A. M., Bradford, S. A., Shelton, D. R., Guber, A. K., & Dao, T. (2006). Transport and fate of manure-borne pathogens: modeling perspective. Agricultural Water Management, 86, 81–92.

    Article  Google Scholar 

  • Qualls, R. G., Flynn, M. P., & Donald Johnson, J. (1983). The role of suspended particles in ultraviolet disinfection. Journal Water Pollution Control Federation, 55(10), 1280–1285.

    CAS  Google Scholar 

  • Rehmannn, C. R., & Soupir, M. L. (2009). Importance of interactions between the water column and the sediment for microbial concentrations in streams. Water Research, 43, 4579–4589.

    Article  Google Scholar 

  • Schillinger, J. E., & Gannon, J. J. (1985). Bacterial adsorption and suspended particles in urban stormwater. Journal Water Pollution Control Federation, 57(5), 384–389.

    CAS  Google Scholar 

  • Sheffield, R. E., Mostaghimi, S., Vaughan, D. H., Collins, E. R., Jr., & Allen, V. G. (1997). Off-stream water sources for grazing cattle as a stream bank stabilization and water quality BMP. Transactions of ASAE, 40(3), 595–604.

    Google Scholar 

  • Soupir, M. L., Mostaghimi, S., & Love, N. G. (2008). Method to partition between attached and unattached E. coli in runoff from agricultural lands. Journal of the American Water Resources Association, 44(6), 1591–1599.

    Article  Google Scholar 

  • Soupir, M. L., Mostaghimi, S., & Dillaha, T. (2010). Attachment of Escherichia coli and enterococci to particles in runoff. Journal of Environmental Quality, 39, 1019–1027.

    Article  CAS  Google Scholar 

  • Stephenson, G. R., & Rychert, R. C. (1982). Bottom sediment: a reservoir of Escherichia coli in rangeland streams. Journal of Range Management, 35(1), 119–123.

    Article  Google Scholar 

  • Thelin, R., & Gifford, G. F. (1983). Fecal coliform release patterns from fecal material of cattle. Journal of Environmental Quality, 12(1), 57–63.

    Article  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). (2000). Improved enumeration methods for the recreational water quality indicators: enterococci and Escherichia coli. Washington, D.C: USEPA, Office of Science and Technology. EPA-821-R-97-004.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). (2011). Watershed assessment, tracking and environmental results. Available at http://iaspub.epa.gov/waters10/attains_nation_cy.control. USEPA, Washington, DC, verified 20 December 2011

  • Vidon, P., Campbell, M. A., & Gray, M. (2008). Unrestricted cattle access to streams and water quality in till landscape of the Midwest. Agricultural Water Management, 95, 322–330.

    Article  Google Scholar 

  • Wu, J., Rees, P., Storrer, S., Alderisio, K., & Dorner, S. (2009). Fate and transport modeling of potential pathogens: the contribution from sediments. Journal of the American Water Resources Association, 45(1), 35–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially funded by Iowa State University and the National Science Foundation (CBET-0967845). A special thanks to research assistants in the WQRL for sample collection and analysis, to Dr. Chris Rehmann for assistance with ADV data analysis, and to Marshall Rubel and the Iowa State University beef research farm for assistance with manure collection. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of Iowa State University or the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Soupir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDaniel, R.L., Soupir, M.L. Relationships Between Manure Particle and E. coli Transport from Direct Fecal Deposits Under Steady-State Flows. Water Air Soil Pollut 224, 1444 (2013). https://doi.org/10.1007/s11270-013-1444-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1444-1

Keywords

Navigation