Skip to main content

Advertisement

Log in

Kinetic and Product Studies of the Reactions of NO2, with Hg0 in the Gas Phase in the Presence of Titania Micro-Particle Surfaces

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

As global mercury emissions from coal fire power plants increase with the continuing rise of coal consumption, mercury capture methods are being developed to prevent mercury’s escape into the atmosphere. Titanium dioxide (TiO2) in the presence of ultra violet light (UV-A; λ max ∼360 nm) and oxygen will capture mercury as the solid product HgO(s). Testing the effects of TiO2 in the presence of other pollutants has so far been limited. We have performed kinetic and product studies of mercury adsorption in the presence of the gaseous flue co-pollutant NO2(g). We extensively studied the gas-phase reaction of NO2(g) with Hg 0(g) . We compared the gas-phase reaction to the same reaction performed in the presence of thin TiO2 particle surfaces from 0 to 100 % relative humidity. The second-order rate constant was measured to be k = (3.5 ± 0.5) × 10−35 cm6 molecules−2 s−1, independent of the presence of titania or the total surface area available for adsorption. Exposure of NO2(g) to titania surfaces that were already saturated in captured mercury (HgO(s)) increased total mercury uptake onto the surface. We discuss the implications of this study to the capture of mercury emissions prior to release to the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Biester, H., Bindler, R., Martinez-Cortizas, A., & Engstrom, D. R. (2007). Modeling the past atmospheric deposition of mercury using natural archives. Environmental Science and Technology, 41(14), 4851–4860.

    Article  CAS  Google Scholar 

  • Cottrell, T. L., & Graham T. E. (1953). “The kinetics of the oxidation of ethylene by nitrogen dioxide.” Journal of the Chemical Society (Resumed)(112), 556–563.

  • Croiset, E., & Thambimuthu, K. V. (2001). NOx and SO2 emissions from O2/CO2 recycle coal combustion. Fuel, 80(14), 2117–2121.

    Article  CAS  Google Scholar 

  • Donohoue, D. L., Bauer, D., Cossairt, B., & Hynes, A. J. (2006). Temperature and pressure dependent rate coefficients for the reaction of Hg with Br and the reaction of Br with Br: A pulsed laser photolysis-pulsed laser induced fluorescence study. Journal of Physical Chemistry A, 110(21), 6623–6632.

    Article  CAS  Google Scholar 

  • Einaga, H., Futamura, S., & Ibusuki, T. (2002). Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: comparison of decomposition behavior on photoirradiated TiO2 catalyst. Applied Catalysis B: Environmental, 38(3), 215–225.

    Article  CAS  Google Scholar 

  • Fernandez, A., Lassaletta, G., Jimenez, V. M., Justo, A., Gonzalez-Elipe, A. R., Herrmann, J. M., & AitaIchou, Y. (1995). Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Applied Catalysis B: Environmental, 7(1–2), 49–63.

    Article  CAS  Google Scholar 

  • Finlayson-Pitts, B. J. & Pitts J. N. (1999). Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications, Elselvier.

  • Fu, X., Zeltner, W. A., & Anderson, M. A. (1995). The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts. Applied Catalysis B: Environmental, 6(3), 209–224.

    Article  CAS  Google Scholar 

  • Granite, E. J., & Pennline, H. W. (2002). Photochemical removal of mercury from flue gas. Industrial and Engineering Chemistry Research, 41(22), 5470–5476.

    Article  CAS  Google Scholar 

  • Granite, E. J., Pennline, H. W., & Hoffman, J. S. (1999). Effects of photochemical formation of mercuric oxide. Industrial and Engineering Chemistry Research, 38(12), 5034–5037.

    Article  CAS  Google Scholar 

  • Granite, E. J., King, W. P., Stanko, D. C., & Pennline, H. W. (2008). Implications of mercury interactions with band-gap semiconductor oxides. Main Group Chemistry, 7(3), 227–237.

    Article  CAS  Google Scholar 

  • Hall, B., Schager, P., & Ljungström, E. (1995). An experimental study on the rate of reaction between mercury vapour and gaseous nitrogen dioxide. Water, Air, and Soil Pollution, 81(1), 121–134.

    Article  CAS  Google Scholar 

  • Li, Y., & Wu, C.-Y. (2007). Kinetic study for photocatalytic oxidation of elemental Mercury on a SiO2–TiO2 Nanocomposite. Environmental Engineering Science, 24(1), 3–12.

    Article  Google Scholar 

  • Li, Y., Murphy, P., & Wu, C.-Y. (2008). Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2–TiO2 nanocomposite. Fuel Processing Technology, 89(6), 567–573.

    Article  CAS  Google Scholar 

  • Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., & Seigneur, C. (2007). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. AMBIO: A Journal of the Human Environment, 36(1), 19–33.

    Article  CAS  Google Scholar 

  • Obrist, D., Tas, E., Peleg, M., Matveev, V., Fain, X., Asaf, D., & Luria, M. (2011). Bromine-induced oxidation of mercury in the mid-latitude atmosphere. Nature Geoscience, 4(1), 22–26.

    Article  CAS  Google Scholar 

  • Ohko, Y., Nakamura, Y., Fukuda, A., Matsuzawa, S., & Takeuchi, K. (2008). Photocatalytic oxidation of nitrogen dioxide with TiO2 Thin Films under Continuous UV-Light Illumination. Journal of Physical Chemistry C, 112(28), 10502–10508.

    Article  CAS  Google Scholar 

  • Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., & Wilson, S. (2006). Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40(22), 4048–4063.

    Article  CAS  Google Scholar 

  • Pal, B., & Ariya, P. A. (2004). Studies of ozone initiated reactions of gaseous mercury: kinetics, product studies, and atmospheric implications. Physical Chemistry Chemical Physics, 6(3), 572–579.

    Article  CAS  Google Scholar 

  • Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., & Telmer, K. (2010). Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10(13), 5951–5964.

    Article  CAS  Google Scholar 

  • Platt, U., & Hˆnninger, G. (2003). The role of halogen species in the troposphere. Chemosphere, 52(2), 325–338.

    Article  CAS  Google Scholar 

  • Presto, A. A., & Granite, E. J. (2006). Survey of catalysts for oxidation of mercury in flue gas. Environmental Science and Technology, 40(18), 5601–5609.

    Article  CAS  Google Scholar 

  • Presto, A. A., & Granite, E. J. (2007). Impact of sulfur oxides on mercury capture by activated carbon. Environmental Science and Technology, 41(18), 6579–6584.

    Article  CAS  Google Scholar 

  • Presto, A. A., Granite, E. J., Karash, A., Hargis, R. A., O’Dowd, W. J., & Pennline, H. W. (2006). A kinetic approach to the catalytic oxidation of mercury in flue gas. Energy & Fuels, 20(5), 1941–1945.

    Article  CAS  Google Scholar 

  • Raofie, F., & Ariya, P. A. (2003). Kinetics and product study of the reaction of BrO radicals with gaseous mercury. Journal de Physique IV, 107, 1119–1121.

    Article  CAS  Google Scholar 

  • Rodríguez, S., Almquist, C., Lee, T. G., Furuuchi, M., Hedrick, E., & Biswas, P. (2004). A mechanistic model for mercury capture with in situ-generated titania particles: role of water vapor. Journal of the Air & Waste Management Association (1995), 54(2), 149–156.

    Article  Google Scholar 

  • Schofield, K. (2008). Fuel-mercury combustion emissions: an important heterogeneous mechanism and an overall review of its implications. Environmental Science and Technology, 42(24), 9014–9030.

    Article  CAS  Google Scholar 

  • Seinfeld, J. H., & Pandis, S. N. (1998). Atmospheric chemistry and physics - from air pollution to climate change. Toronto: John Wiley & Sons.

    Google Scholar 

  • Slemr, F., Brunke, E. G., Ebinghaus, R., & Kuss, J. (2011). Worldwide trend of atmospheric mercury since 1995. Atmospheric Chemistry and Physics, 11(10), 4779–4787.

    Article  CAS  Google Scholar 

  • Snider, G., & Ariya, P. (2010). Photo-catalytic oxidation reaction of gaseous mercury over titanium dioxide nanoparticle surfaces. Chemical Physics Letters, 491(1–3), 23–28.

    Article  CAS  Google Scholar 

  • Snider, G., Raofie, F., & Ariya, P. A. (2008). Effects of relative humidity and CO(g) on the O-3-initiated oxidation reaction of Hg-0(g): kinetic & product studies. Physical Chemistry Chemical Physics, 10(36), 5616–5623.

    Article  CAS  Google Scholar 

  • Sommar, J., Hallquist, M., Ljungström, E., & Lindqvist, O. (1997). On the gas phase reactions between volatile biogenic mercury species and the nitrate radical. Journal of Atmospheric Chemistry, 27(3), 233–247.

    Article  CAS  Google Scholar 

  • Sumner, A., Spicer, C., Satola, J., Mangaraj, R., Cowen, K., Landis, M., Atkeson T. (2005). Environmental Chamber Studies of Mercury Reactions in the Atmosphere. Dynamics of Mercury Pollution on Regional and Global Scales 193–212.

  • Tie, X., Zhang, R., Brasseur, G., & Lei, W. (2002). Global NOx production by lightning. Journal of Atmospheric Chemistry, 43(1), 61–74.

    Article  CAS  Google Scholar 

  • Wojcik-Pastuszka, D., Gola, A., & Ratajczak, E. (2005). Gas phase kinetics of the reaction system of 2NO <=> N2O4 and simple alcohols between 293–358 K. Polish Journal of Chemistry, 79, 1301–1313.

    CAS  Google Scholar 

  • Wu, C. Y., Lee, T. G., Tyree, G., Arar, E., & Biswas, P. (1998). Capture of mercury in combustion systems by in situ-generated titania particles with UV irradiation. Environmental Engineering Science, 15(2), 137–148.

    Article  CAS  Google Scholar 

  • Xu, Y., & Langford, C. H. (2000). Variation of Langmuir adsorption constant determined for TiO2-photocatalyzed degradation of acetophenone under different light intensity. Journal of Photochemistry and Photobiology A: Chemistry, 133(1–2), 67–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Daniel Deeds for his helpful comments and for the McGill Department of Chemical Engineering for SEM equipment use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parisa Ariya.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 817 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snider, G., Ariya, P. Kinetic and Product Studies of the Reactions of NO2, with Hg0 in the Gas Phase in the Presence of Titania Micro-Particle Surfaces. Water Air Soil Pollut 223, 4397–4406 (2012). https://doi.org/10.1007/s11270-012-1203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1203-8

Keywords

Navigation