Skip to main content
Log in

New Design Approaches for Ultrasonic Reactors: Degradation of Naphthalene and Phenol in Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This present study has been conducted in order to design new types (single and dual fields) of ultrasonic reactors and to determine the cavitational activity associated with acoustic effects. In particular, this study reports on the effect of different bottom plate inclination angles (60°, 90°, and 120°) on the cavitational efficiency of several different reactors. This efficiency was estimated on the basis of the removal of naphthalene and phenol associated with H2O2 production. In each experiment, ultrasonic irradiations of naphthalene and phenol in deionized water with an initial concentration of 2.5 mg L−1 were carried out at a frequency of 580 kHz and with a reaction time of 30 min, an ultrasonic power of 200 W, and an aqueous temperature of 20°C. The concentration of H2O2 was also determined in order to investigate the efficacy of different sonochemical reactors for HO• production. It was clearly observed that the HO• production varied depending on the type of reactor. In general, the dual field reactors are more effective for the HO• production than the single field ones. For the dual field reactors, the degradation constants of the compounds followed this order: type D-3 (120°, 14.4 × 10−2 min−1)  >  type D-1 (60°, 13.7 × 10−2 min−1)  >  type D-2 (90°, 12.1 × 10−2 min−1) for naphthalene and type D-3 (120°, 6.8 × 10−2 min−1)  ≥ type D-1 (60°, 6.7 × 10−2 min−1)  >  type D-2 (90°, 5.8 × 10−2 min−1) for phenol. In all the experiments, it was also observed that the degradation of relatively hydrophobic naphthalene was higher than that of phenol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Adewuyi, Y. G. (2001). Sonochemistry: environmental science and engineering applications. Industrial and Engineering Chemistry Research, 40, 4681–4715.

    Article  CAS  Google Scholar 

  • Ashokkumar, M., Hall, R., Mulvaney, P., & Grieser, F. (1997). Sonoluminescence from aqueous alcohol to surfactant solutions. The Journal of Physical Chemistry. B, 101, 10845–10850.

    Article  CAS  Google Scholar 

  • Ashokkumar, M., Mulvaney, P., & Grieser, F. (1999). The effect of pH on multibubble sonoluminescence from aqueous solutions containing simple organic weak acids to bases. Journal of the American Chemical Society, 121, 7355–7359.

    Article  CAS  Google Scholar 

  • Bapat, P. S., Gogate, P. R., & Pandit, A. B. (2008). Theoretical analysis of sonochemical degradation of phenol and its chloro-derivatives. Ultrasonics Sonochemistry, 15, 564–570.

    Article  CAS  Google Scholar 

  • Bidleman, T. F., Helm, P. A., Braune, B. M., & Gabrielsen, G. M. (2010). Polychlorinated naphthalenes in polar environments—a review. The Science of the Total Environment, 408, 2919–2935.

    Article  CAS  Google Scholar 

  • Chand, R., Ince, N. H., Gogate, P. R., & Bremner, D. H. (2009). Phenol degradation using 20, 300 and 520 kHz ultrasonic reactors with hydrogen peroxide, ozone and zero valent metals. Separation and Purification Technology, 67, 103–109.

    Article  CAS  Google Scholar 

  • Chang, S. J., & Liu, Y. C. (2007). Degradation mechanism of 2, 4, 6-trinitrotoluene in supercritical water oxidation. Journal of Environmental Sciences(China), 19, 1430–1435.

    Article  CAS  Google Scholar 

  • Chowdhury, P., & Viraraghavan, T. (2009). Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes—a review. The Science of the Total Environment, 407, 2474–2492.

    Article  CAS  Google Scholar 

  • Dahnke, S., & Keil, F. (1998a). Modeling of sound fields in liquids with a nonhomogeneous distribution of cavitation bubbles as a basis for the design of sonochemical reactors. Chemical Engineering and Technology, 21, 873–877.

    Article  Google Scholar 

  • Dahnke, S., & Keil, F. (1998b). Modelling of sonic fields in inhomogeneous cavitation bubble fields as a basis for the design of sonochemical reactors. Chemie Ingenieur Technik, 70, 1300–1303.

    Article  Google Scholar 

  • Faid, F., Romdhane, M., Gourdon, C., Wilhelm, A. M., & Delmas, H. (1998). A comparative study of local sensors of power ultrasound effects: electrochemical, thermoelectrical and chemical probes. Ultrasonics Sonochemistry, 5, 63–68.

    Article  CAS  Google Scholar 

  • Gogate, P. R. (2008). Cavitational reactors for process intensification of chemical processing applications: a critical review. Chemical Engineering and Processing, 47, 515–527.

    CAS  Google Scholar 

  • Gogate, P. R., & Pandit, A. B. (2000). Engineering design methods for cavitation reactors II: hydrodynamic cavitation. AIChE Journal, 46, 1641–1649.

    Article  CAS  Google Scholar 

  • Gogate, P. R., Tatake, P. A., Kanthale, P. M., & Pandit, A. B. (2002). Mapping of sonochemical reactors: review, analysis, and experimental verification. AIChE Journal, 48, 1542–1560.

    Article  CAS  Google Scholar 

  • Gonze, E., Gonthier, Y., Boldo, P., & Bernis, A. (1998). Standing waves in a high frequency sonoreactor: visualization and effects. Chemical Engineering Science, 53, 523–532.

    Article  CAS  Google Scholar 

  • Hao, H. W., Wu, M. S., Chen, Y. F., Yin, Y. W., & Lu, Z. L. (2003). Cavitation-induced pyrolysis of toxic chlorophenol by high-frequency ultrasonic irradiation. Environmental Toxicology, 18, 413–417.

    Article  CAS  Google Scholar 

  • Isariebel, Q. P., Carine, J. L., Ulises-Javier, J. H., Anne-Marie, W., & Henri, D. (2009). Sonolysis of levodopa and paracetamol in aqueous solutions. Ultrasonics Sonochemistry, 16, 610–616.

    Article  CAS  Google Scholar 

  • Joseph, C. G., Puma, G. L., Bono, A., & Krishnaiah, D. (2009). Sonophotocatalysis in advanced oxidation process: a short review. Ultrasonics Sonochemistry, 16, 583–589.

    Article  CAS  Google Scholar 

  • Kidak, R., & Ince, N. H. (2006). Ultrasonic destruction of phenol and substituted phenols: a review of current research. Ultrasonics Sonochemistry, 13, 195–199.

    Article  CAS  Google Scholar 

  • Koch, R., Knispel, R., Elend, M., Siese, M., & Zetzsch, C. (2007). Consecutive reactions of aromatic-OH adducts with NO, NO2 and O2: benzene, naphthalene, toluene, m- and p-xylene, hexamethylbenzene, phenol, m-cresol and aniline. Atmospheric Chemistry and Physics, 7, 2057–2071.

    Article  CAS  Google Scholar 

  • Kormann, C., Bahnemann, D. W., & Hoffmann, M. R. (1988). Photocatalytic production of H2O2 and organic peroxides in aqueous suspensions of TiO2, ZnO, and desert sand. Environmental Science & Technology, 22, 798–806.

    Article  CAS  Google Scholar 

  • Leighton, T. G. (1994). The acoustic bubble. London: Academic.

    Google Scholar 

  • Llop, A., Borrull, F., & Pocurull, E. (2009). Comparison of the removal of phthalates and other organic pollutants from industrial wastewaters in membrane bioreactor to conventional activated sludge treatment plants. Water Science and Technology, 60, 2425–2437.

    Article  CAS  Google Scholar 

  • Nakui, H., Okitsu, K., Maeda, Y., & Nishimura, R. (2009). Sonochemical decomposition of hydrazine in water: effects of coal ash and pH on the decomposition and adsorption behavior. Chemosphere, 76, 716–720.

    Article  CAS  Google Scholar 

  • Nanzai, B., Okitsu, K., Takenaka, N., Bandow, H., & Maeda, Y. (2008). Sonochemical degradation of various monocyclic aromatic compounds: relation between hydrophobicities of organic compounds and the decomposition rates. Ultrasonics Sonochemistry, 15, 478–483.

    Article  CAS  Google Scholar 

  • Panizza, M., Bocca, C., & Cerisola, G. (2000). Electrochemical treatment of wastewater containing polyaromatic organic pollutants. Water Research, 34, 2601–2605.

    Article  CAS  Google Scholar 

  • Park, J., Her, N., & Yoon, Y. (2011). Sonochemical degradation of chlorinated phenolic compounds in water: effects of physicochemical properties of compounds on degradation. Water, Air, and Soil Pollution. doi:10.1007/s11270-010-0501-2.

  • Psillakis, E., Goula, G., Kalogerakis, N., & Mantzavinos, D. (2004). Degradation of polycyclic aromatic hydrocarbons in aqueous solutions by ultrasonic irradiation. Journal of Hazardous Materials, 108, 95–102.

    Article  CAS  Google Scholar 

  • Romdhane, M., Gourdon, C., & Casamatta, G. (1995). Local investigation of some ultrasonic devices by means of a thermal sensor. Ultrasonics, 33, 221–227.

    Article  CAS  Google Scholar 

  • Sivakumar, M., Tatake, P. A., & Pandit, A. B. (2002). Kinetics of p-nitrophenol degradation: effect of reaction conditions and cavitational parameters for a multiple frequency system. Chemical Engineering Journal, 85, 327–338.

    Article  CAS  Google Scholar 

  • SRC. (2006). Syracuse Research Corporation, Interactive PhysProp Database. Retrieved from http://www.syrres.com/what-we-do/databaseforms.aspx?id=386.

  • Tatake, P. A., & Pandit, A. B. (2002). Modelling and experimental investigation into cavity dynamics and cavitational yield: influence of dual frequency ultrasound sources. Chemical Engineering Science, 57, 4987–4995.

    Article  CAS  Google Scholar 

  • Teo, K. C., Xu, Y. R., & Yang, C. (2001). Sonochemical degradation for toxic halogenated organic compounds. Ultrasonics Sonochemistry, 8, 241–246.

    Article  CAS  Google Scholar 

  • Wang, S. L., Huang, B. B., Wang, Y. S., & Liao, L. (2006). Comparison of enhancement of pentachlorophenol sonolysis at 20 kHz by dual-frequency sonication. Ultrasonics Sonochemistry, 13, 506–510.

    Article  CAS  Google Scholar 

  • Yasuda, K., Torii, T., Yasui, K., Iida, Y., Tuziuti, T., Nakamura, M., et al. (2007). Enhancement of sonochemical reaction of terephthalate ion by superposition of ultrasonic fields of various frequencies. Ultrasonics Sonochemistry, 14, 699–704.

    Article  CAS  Google Scholar 

  • Zhu, L. Z., & Zhu, R. L. (2007). Simultaneous sorption of organic compounds and phosphate to inorganic–organic bentonites from water. Separation and Purification Technology, 54, 71–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Korea Ministry of Environment, “GAIA Project, 02-141-081-021).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeomin Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Her, NG., Park, JS., Oh, J. et al. New Design Approaches for Ultrasonic Reactors: Degradation of Naphthalene and Phenol in Water. Water Air Soil Pollut 220, 173–180 (2011). https://doi.org/10.1007/s11270-011-0744-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0744-6

Keywords

Navigation