Skip to main content
Log in

Active, Foveated, Uncalibrated Stereovision

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Biological vision systems have inspired and will continue to inspire the development of computer vision systems. One biological tendency that has never been exploited is the symbiotic relationship between foveation and uncalibrated active, binocular vision systems. The primary goal of any binocular vision system is the correspondence of the two retinal images. For calibrated binocular rigs the search for corresponding points can be restricted to epipolar lines. In an uncalibrated system the precise geometry is unknown. However, the set of possible geometries can be restricted to some reasonable range; and consequently, the search for matching points can be confined to regions delineated by the union of all possible epipolar lines over all possible geometries. We call these regions epipolar spaces. The accuracy and complexity of any correspondence algorithm is directly proportional to the size of these epipolar spaces. Consequently, the introduction of a spatially variant foveation strategy that reduces the average area per epipolar space is highly desirable. This paper provides a set of sampling theorems that offer a path for designing foveation strategies that are optimal with respect to average epipolar area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aloimonos, J., Weiss, I., & Bandyopadhyay, A. (1987). Active vision. In Proceedings of the first international conference on computer vision (pp. 35–54).

  • Ballard, D. (1991). Animate vision. Artificial Intelligence Journal, 48, 57–86.

    Article  Google Scholar 

  • Basu, A. (1992). Optimal discretization for stereo reconstruction. Pattern Recognition Letters, 13(11), 813–820.

    Article  Google Scholar 

  • Blakemore, C. (1970). The range and scope of binocular depth discrimination in man. Journal of Physiology, 211(3), 599–622.

    Google Scholar 

  • Bough, E. W. (1970). Stereoscopic vision in the macaque monkey: a behavioural demonstration. Nature, 225(5227), 42–44.

    Article  Google Scholar 

  • Bovik, A. C. (2000). The handbook of image & video processing. San Diego: Academic Press.

    Google Scholar 

  • Chen, Q. S., & Deconinck, F. (1994). Foveal-view stereopsis using symmetric phase-only matched filtering. Proceedings of SPIE (The International Society for Optical Engineering), 2233, 46–53.

    Google Scholar 

  • Crowell, J. A., & Banks, M. S. (1993). Perceiving heading with different retinal regions and types of optic flow. Perception Psychophysics, 53(3), 325–337.

    Google Scholar 

  • Davis, F. A. (1929). The anatomy and histology of the eye and orbit of the rabbit. Transactions American Ophthalmological Society, 27, 401–441.

    Google Scholar 

  • Dhond, U. R., & Aggarwal, J. (1989). Structure from stereo—a review. IEEE Transactions on Systems, Man and Cybernetics, 19(6), 1489–1510.

    Article  MathSciNet  Google Scholar 

  • Dräger, U. C., & Olsen, J. F. (1980). Origins of crossed and uncrossed retinal projections in pigmented and albino mice. Journal of Comparative Neurology, 191(3), 383–412.

    Article  Google Scholar 

  • Easter, S. S. (1972). Pursuit eye movements in goldfish (carassius auratus). Vision Research, 12(4), 673–688.

    Article  Google Scholar 

  • Elnagar, A. (1998). Optimal error discretization under depth and range constraints. Pattern Recognition Letters, 19(9), 879–888.

    Article  Google Scholar 

  • Faugeras, O. D., Luong, Q. T., & Maybank, S. J. (1992). Camera self calibration: Theory and experiments. In Proceedings of the Second European Conference on Computer Vision (Vol. 588, pp. 321–334).

  • Fite, K. V., & Rosenfield-Wessels, S. (1975). A comparative study of deep avian foveas. Brain, Behavior and Evolution, 12(1–2), 97–115.

    Article  Google Scholar 

  • Fox, R., Lehmkuhle, S. W., & Bush, R. C. (1977). Stereopsis in the falcon. Science, 197(4298), 79–81.

    Article  Google Scholar 

  • Geisler, W. S., & Perry, J. S. (1998). Real-time foveated multiresolution system for low-bandwidth video communication. In B. E. Rogowitz & T. N. Pappas (Eds.) Society of photo-optical instrumentation engineers (SPIE) conference series (Vol. 3299, pp. 294–305). Bellingham: SPIE.

    Google Scholar 

  • Hespanha, J., Dodds, Z., Hager, G., & Morse, A. (1999). What tasks can be performed with an uncalibrated stereo vision system? International Journal of Computer Vision, 35(1), 65–85.

    Article  Google Scholar 

  • Horn, B. (1986). Robot vision. Cambridge: MIT Press.

    Google Scholar 

  • Howard, I., & Rogers, B. (1995). Binocular vision and stereopsis. London: Oxford University Press.

    Google Scholar 

  • Jenkin, M., Jepson, A., & Tsotsos, J. (1991). Techniques for disparity measurement. Computer Vision, Graphics, and Image Processing: Image Understanding, 53(1), 14–30.

    MATH  Google Scholar 

  • Kaiser, M. K., & Hecht, H. (1995). Time-to-passage judgments in nonconstant optical flow fields. Perception Psychophysics, 57(6), 817–825.

    Google Scholar 

  • Klarquist, W. N., & Bovik, A. C. (1998). Fovea: A foveated vergent active stereo vision system for dynamic three-dimensional scene recovery. IEEE Transactions on Robotics and Automation, 14(5), 755–770.

    Article  Google Scholar 

  • Lee, S., Pattichis, M., & Bovik, A. (2001). Foveated video compression with optimal rate control. IEEE Transactions on Image Processing, 10(7), 977–992.

    Article  MATH  MathSciNet  Google Scholar 

  • Li, F., & Zhou, Y. (1999). Disparity estimation based on frequency domain. Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 33(5), 516–519.

    Google Scholar 

  • Manzotti, R., Gasteratos, A., Metta, G., & Sandini, G. (2001). Disparity estimation on log-polar images and vergence control. Computer Vision and Image Understanding, 83(2), 97–117.

    Article  MATH  Google Scholar 

  • Marr, D., & Poggio, T. (1976). Cooperative computation of stereo disparity. Science, 194(4262), 283–287.

    Article  Google Scholar 

  • Marr, D., & Poggio, T. (1979). A computational theory of human stereo vision. Philosophical Transactions of the Royal Society B: Biological Sciences, 204(1156), 301–328.

    Article  Google Scholar 

  • Monaco, J., Bovik, A., & Cormack, L. (2007a). Epipolar spaces and optimal sampling strategies. IEEE International Conference on Image Processing, 6, VI-545–VI-548.

    Google Scholar 

  • Monaco, J., Bovik, A., & Cormack, L. (2007b). Epipolar spaces for active binocular vision systems. IEEE International Conference on Image Processing, 6, VI-549–VI-551.

    Google Scholar 

  • Monaco, J. P., Bovik, A. C., & Cormack, L. K. (2008). Nonlinearities in stereoscopic phase-differencing. IEEE Transactions on Image Processing, 17(9), 1672–1684.

    Article  Google Scholar 

  • Nielsen, K. R., & Poggio, T. (1984). Vertical image registration in stereopsis. Vision Research, 24(10), 1133–1140.

    Article  Google Scholar 

  • Olver, P., & Shakiban, C. (2009, in preparation). Fundamentals of applied mathematics. New York: Prentice-Hall.

  • Ptito, M., Lepore, F., & Guillemot, J. P. (1991). Stereopsis in the cat: behavioral demonstration and underlying mechanisms. Neuropsychologia, 29(6), 443–464.

    Article  Google Scholar 

  • Rapaport, D. H., & Stone, J. (1984). The area centralis of the retina in the cat and other mammals: focal point for function and development of the visual system. Neuroscience, 11(2), 289–301.

    Article  Google Scholar 

  • Ross, C. (1996). An adaptive explanation for the origin of the anthropoidea. American Journal of Primatology, 40(2), 205–230.

    Article  Google Scholar 

  • Sandini, G., & Tistarelli, M. (1990). Active tracking strategy for monocular depth inference over multiple frames. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1), 13–27.

    Article  Google Scholar 

  • Sanger, T. (1988). Stereo disparity computation using Gabor filters. Biological Cybernetics, 59, 405–418.

    Article  Google Scholar 

  • Schindler, K., & Bischof, H. (2004). The epipolar geometry of the log-polar image plane. Proceedings of the International Conference on Pattern Recognition, 4, 40–43.

    Google Scholar 

  • Schreiber, K., Crawford, J. D., Fetter, M., & Tweed, D. (2001). The motor side of depth vision. Nature, 410(6830), 819–822.

    Article  Google Scholar 

  • Schreiber, K. M., & Tweed, D. B. (2003). Influence of eye position on stereo matching. Strabismus, 11(1), 9–16.

    Article  Google Scholar 

  • Schwartz, E., Tootell, R. B., Silverman, M. S., Switkes, E., & Valois, R. L. D. (1985). On the mathematical structure of the visuotopic mapping of macaque striate cortex. Science, 227(4690), 1065–1066.

    Article  Google Scholar 

  • Schwartz, E. L. (1980). A quantitative model of the functional architecture of human striate cortex with application to visual illusion and cortical texture analysis. Biological Cybernetics, 37(2), 63–76.

    Article  Google Scholar 

  • Shah, S., & Aggarwal, J. (1994). Depth estimation using stereo fish-eye lenses. Proceedings of the IEEE International Conference on Image Processing, 2, 740–744.

    Article  Google Scholar 

  • Shih, S. W., Hung, Y. P., & Lin, W. S. (1998). Calibration of an active binocular head. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 28(4), 426–442.

    Article  Google Scholar 

  • Snyder, A., Bossomaier, T., & Hughes, A. (1986). Optical image quality and the cone mosaic. Science, 231(4737), 499–501.

    Article  Google Scholar 

  • Stevenson, S. B., & Schor, C. M. (1997). Human stereo matching is not restricted to epipolar lines. Vision Research, 37(19), 2717–2723.

    Article  Google Scholar 

  • Strang, G. (1988). Linear algebra and its applications. San Diego: Harcourt Brace Jovanovich.

    Google Scholar 

  • Thompson, I. (1991). Vision and visual dysfunction, Vol. 2. Boca Raton: CRC Press (Chap. 7, pp. 136–151).

    Google Scholar 

  • Tiao, Y. C., & Blakemore, C. (1976). Regional specialization in the golden hamster’s retina. Journal of Comparative Neurology, 168(4), 439–457.

    Article  Google Scholar 

  • Tistarelli, M., & Sandini, G. (1991). Direct estimation of time-to-impact from optical flow. In Proceedings of the IEEE workshop on visual motion (pp. 226–233).

  • Tootell, R. B., Silverman, M. S., Switkes, E., & Valois, R. L. D. (1982). Deoxyglucose analysis of retinotopic organization in primate striate cortex. Science, 218(4575), 902–904.

    Article  Google Scholar 

  • Virsu, V., & Hari, R. (1996). Cortical magnification, scale invariance and visual ecology. Vision Research, 36(18), 2971–2977.

    Article  Google Scholar 

  • Wang, Z., & Bovik, A. C. (2001). Embedded foveation image coding. IEEE Transactions on Image Processing, 10(10), 1397–1410.

    Article  MATH  Google Scholar 

  • Wathey, J. C., & Pettigrew, J. D. (1989). Quantitative analysis of the retinal ganglion cell layer and optic nerve of the barn owl tyto alba. Brain, Behavior Evolution, 33(5), 279–292.

    Article  Google Scholar 

  • Wei, J., & Li, Z. N. (1998). Efficient disparity-based gaze control with foveate wavelet transform. IEEE International Conference on Intelligent Robots and Systems, 2, 866–871.

    Google Scholar 

  • Weiman, C. F. (1995). Binocular stereo via log-polar retinas. Proceedings of SPIE—The International Society for Optical Engineering, 2488, 309–320.

    Google Scholar 

  • van der Willigen, R. F., Frost, B. J., & Wagner, H. (1998). Stereoscopic depth perception in the owl. Neuroreport, 9(6), 1233–1237.

    Article  Google Scholar 

  • Yeshurun, Y., & Schwartz, E. L. (1999). Cortical hypercolumn size determines stereo fusion limits. Biological Cybernetics, 80(2), 117–129.

    Article  MATH  Google Scholar 

  • Zeevi, Y., & Shlomot, E. (1993). Nonuniform sampling and antialiasing in image representation. IEEE Transactions on Signal Processing, 41(3), 1223–1236.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Monaco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monaco, J.P., Bovik, A.C. & Cormack, L.K. Active, Foveated, Uncalibrated Stereovision. Int J Comput Vis 85, 192–207 (2009). https://doi.org/10.1007/s11263-009-0230-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-009-0230-4

Keywords

Navigation