Skip to main content
Log in

3D Topology Preserving Flows for Viewpoint-Based Cortical Unfolding

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We present a variational method for unfolding of the cortex based on a user-chosen point of view as an alternative to more traditional global flattening methods, which incur more distortion around the region of interest. Our approach involves three novel contributions. The first is an energy function and its corresponding gradient flow to measure the average visibility of a region of interest of a surface with respect to a given viewpoint. The second is an additional energy function and flow designed to preserve the 3D topology of the evolving surface. The third is a method that dramatically improves the computational speed of the 3D topology preservation approach by creating a tree structure of the 3D surface and using a recursion technique. Experiments results show that the proposed approach can successfully unfold highly convoluted surfaces such as the cortex while preserving their topology during the evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, A., Cantarella, J., Fu, J., Ghomi, M., & Howard, R. (2003). Circles minimize most knot energies. Topology, 42, 381–394.

    Article  MATH  MathSciNet  Google Scholar 

  • Alexandrov, O., & Santosa, F. (2005). A topology-preserving level set method for shape optimization. Journal of Computational Physics, 204, 121–130.

    Article  MATH  MathSciNet  Google Scholar 

  • Angenet, S., Haker, S., Tannenbaum, A., & Kikinis, R. (1999). On the Laplace-Bertrami operator and brain surface flattening. IEEE Transactions on Medical Imaging, 18(80), 700–711.

    Article  Google Scholar 

  • Cantarella, J. H., Demaine, E. D., Iben, H. N., & O’Brian, J. F. (2004). An energy-driven approach to linkage unfolding. In: Proceedings of the 20th symposium on computational geometry, pp. 134–143.

  • Carman, G. J., Drury, H. A., & Van Essen, D. C. (1995). Computational methods for reconstructing and unfolding the cerebral cortex. Cerebra Cortex, 5, 506–517.

    Article  Google Scholar 

  • Durant, F. (1999). 3D visibility: analysis, study and applications. Ph.D. thesis, University J. Fourier, Grenoble, France.

  • Fischl, B., Sereno, M., & Dale, A. (1999). Cortical surface-based analysis. Neuroimage, 9, 195–207.

    Article  Google Scholar 

  • Han, C., Xu, D., Tosun, D., & Prince, J. L. (2001). Cortical surface reconstruction using a topology preserving geometric deformable model. In Proceedings of fifth IEEE workshop on mathematical methods in biomedical image analysis (MMBIA’01) (pp. 213–220).

  • Han, X., Xu, C., & Prince, J. L. (2003). A topology preserving level set method for geometric deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(6), 755–768.

    Article  Google Scholar 

  • Hermosillo, G., Faugeras, O., & Gomes, J. (1999). Cortex unfolding using level set methods. Technical report 3663, INRIA.

  • Hertzmann, A., & Zorin, D. (2000). Illustrating smooth surfaces. In Proceedings SIGGRAPH, pp. 517–526.

  • Iben, H. N., O’Brien, J. R., & Demaine, E. D. (2006). Refolding planar polygons. In: Proceedings of the 22nd symposium on computational geometry, pp. 71–79.

  • Le Guyader, C., & Vese, L. (2007). Self-repelling snakes for topology segmentation models. Technical report, UCLA.

  • O’Hara, J. (1991). Energy of a knot. Topology, 30, 241–247.

    Article  MATH  MathSciNet  Google Scholar 

  • Osher, S., & Sethian, J. (1988). Fronts propagating with curvature-dependent speed: algorithms based on the Hamilton-Jacobi equations. Journal of Computational Physics, 79, 12–49.

    Article  MATH  MathSciNet  Google Scholar 

  • Pons, J.-P., Keriven, R., & Faugeras, O. (2004). Area preserving cortex unfolding. In Proceedings of international conference on medical image computing and computer assisted intervention (MICCAI’04) (pp. 376–383).

  • Pope, A. R. (1994). Model-based object recognition: a survey of recent research. Technical report TR-94-04, University of British Columbia, Department of Computer Science.

  • Rocha, K., Yezzi, A., Mennucci, A., & Prince, J. L. (2007). Viewpoint-based visibility maximizing flows. In Proceedings of international conference on medical image computing and computer assisted intervention (MICCAI’07) (pp. 499–506).

  • Sapiro, G., & Tannenbaum, A. (2005). Area and length preserving geometric invariant scale-spaces. Pattern Analysis and Machine Intelligence, 17(1), 67–72.

    Article  Google Scholar 

  • Segonne, F. (2008). Active contours under topology control genus preserving level sets. International Journal on Computer Vision, 79(2), 107–117.

    Article  Google Scholar 

  • Sethian, J. A., & Adalsteinsson, D. (1997). An overview of level set methods for etching, deposition, and lithography development. IEEE Transactions on Semiconductor Manufacturing, 10(1), 167–184.

    Article  MathSciNet  Google Scholar 

  • Shi, Y., & Karl, W. C. (2004). Differentiable minimin shape distance for incorporating topological priors in biomedical imaging. In: IEEE international symposium on biomedical imaging, pp. 1247–1250.

  • Slabaugh, G., & Unal, G. (2005). Active polyhedron: surface evolution theory applied to deformable meshes. In Proceedings of IEEE Computer Society conference on computer vision and pattern recognition (CVPR’05) (pp. 84–91).

  • Sundaramoorthi, G., & Yezzi, A. (2005). More-than-topology-preserving flows for active contours and polygons. In Proceedings of the tenth IEEE international conference on computer vision (ICCV’05) (pp. 1276–1283).

  • Unal, G., Yezzi, A., & Krim, H. (2005). Information-theoretic active polygons for unsupervised texture segmentation. International Journal of Computer Vision, 62(3), 199–220.

    Article  Google Scholar 

  • Wandell, B. A., Chial, S., & Backus, B. T. (2000). Visualization and measurement of the cortical surface. Journal of Cognitive Neuroscience, 12(5), 739–752.

    Article  Google Scholar 

  • Witkin, A., & Baraff, D. (1997). Physically based modeling: principles and practice. SIGGRAPH Course Notes, pp. 1–13.

  • Woo, A., Poulin, P., & Fournier, A. (1990). A survey of shadow algorithms. IEEE Computer Graphics and Applications, 6(10), 13–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelvin R. Rocha.

Additional information

This work was supported by the grants NSF CCR-0133736 and NIH/NINDS R01-NS-037747.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocha, K.R., Sundaramoorthi, G., Yezzi, A.J. et al. 3D Topology Preserving Flows for Viewpoint-Based Cortical Unfolding. Int J Comput Vis 85, 223–236 (2009). https://doi.org/10.1007/s11263-009-0214-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-009-0214-4

Keywords

Navigation