Skip to main content

Advertisement

Log in

Spatial variations in salinity stress across a coastal landscape using vegetation indices derived from hyperspectral imagery

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Chlorophyll fluorescence and landscape-level reflectance imagery were used to evaluate spatial variations in stress in Myrica cerifera and Iva frutescens during a severe drought and compared to an extremely wet year. Measurements of relative water content and the water band index (WBI970) indicated that the water stress did not vary across the island. In contrast, there were significant differences in tissue chlorides across sites for both species. Using the physiological reflectance index (PRI), we were able to detect salinity stress across the landscape. For M. cerifera, PRI did not differ between wet and dry years, while for I. frutescens, there were differences in PRI during the 2 years, possibly related to flooding during the wet year. There was a positive relationship between PRI and \( \Updelta F/F_{\text{m}}^{\prime } \) for M. cerifera (r 2 = 0.79) and I. frutescens (r 2 = 0.72). The normalized difference vegetation index (NDVI), the chlorophyll index (CI), and WBI970 were higher during the wet summer for M. cerifera, but varied little across the island. CI and WBI970 were higher during 2004 for I. frutescens, while there were no differences in NDVI during the 2 years. PRI was not significantly related to NDVI, suggesting that the indices are spatially independent. These results suggest that PRI may be used for early identification of salt stress that may lead to changes in plant distributions at the landscape level, as a result of rising sea level. Comparsions between the two species indicate that variations in PRI and other indices may be species specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Asner GP, Nepstad D, Cardinot G, Ray D (2004) Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy. Proc Natl Acad Sci USA 101:6039–6044. doi:10.1073/pnas.0400168101

    Article  PubMed  CAS  Google Scholar 

  • Bertness MD, Wikler K, Chatkupt T (1992) Flood tolerance and the distribution of Iva frutescens across New England salt marshes. Oecologia 91:171–178. doi:10.1007/BF00317780

    Article  Google Scholar 

  • Blackburn GA (2007) Hyperspectral remote sensing of plant pigments. J Exp Bot 58:855–867. doi:10.1093/jxb/erl123

    Article  PubMed  CAS  Google Scholar 

  • Brantley ST, Young DR (2007) Leaf area-index and light attenuation in rapidly expanding shrub thickets. Ecology 88:524–530. doi:10.1890/06-0913

    Article  PubMed  Google Scholar 

  • Brinson MM (2007) Ground water level at Brownsville and Hog Island, VA. Data of the Virginia Coast Reserve long-term ecological research project VCR05130

  • Carter GA (1993) Responses of leaf spectral reflectance to plant stress. Am J Bot 80:239–243. doi:10.2307/2445346

    Article  Google Scholar 

  • Carter GA, Young DR (1993) Foliar spectral reflectance and plant stress on a barrier island. Int J Plant Sci 154:298–305. doi:10.1086/297110

    Article  Google Scholar 

  • Crawford RMM (1989) Studies in plant survival. Blackwell Scientific, Oxford

    Google Scholar 

  • Daughtry CST, Walthall CL, Kim MS, Brown de Colstoun E, Mcmurtrey JE III (2000) Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens Environ 74:229–239. doi:10.1016/S0034-4257(00)00113-9

    Article  Google Scholar 

  • Davis C, Bowles J, Leathers R, Korwan D, Downes TV, Snyder W et al (2002) Ocean PHILLS hyperspectral imager: design, characterization, and calibration. Opt Express 10:210–221

    Google Scholar 

  • Demmig-Adams B, Adams WW III (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626. doi:10.1146/annurev.pp.43.060192.003123

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26. doi:10.1016/S1360-1385(96)80019-7

    Article  Google Scholar 

  • Dobrowski SZ, Pushnik JC, Zarco-Tejada PJ, Ustin SL (2005) Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale. Remote Sens Environ 97:403–414. doi:10.1016/j.rse.2005.05.006

    Article  Google Scholar 

  • Ehrenfeld JG (1990) Dynamics and processes of barrier island vegetation. Rev Aquat Sci 2:437–480

    Google Scholar 

  • Evain S, Flexas J, Moya I (2004) A new instrument for passive remote sensing: 2. Measurement of leaf and canopy reflectance changes at 531 nm and their relationship with photosynthesis and chlorophyll fluorescence. Remote Sens Environ 91:175–185. doi:10.1016/j.rse.2004.03.012

    Article  Google Scholar 

  • Filella I, Peñuelas J (1999) Altitudinal differences in UV absorbance, UV reflectance and related morphological traits of Quercus ilex and Rhododendron ferrugineum in the Mediterranean region. Plant Ecol 145:157–165. doi:10.1023/A:1009826803540

    Article  Google Scholar 

  • Filella I, Peñuelas J, Llorens L, Estiarte M (2004) Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean shrubland submitted to experimental warming and drought. Remote Sens Environ 90:308–318. doi:10.1016/j.rse.2004.01.010

    Article  Google Scholar 

  • Fuentes DA, Gamon JA, Cheng Y, Claudio HC, Qiu H, Mao Z et al (2006) Mapping carbon and water vapor fluxes in a chaparral ecosystem using vegetation indices derived from AVIRIS. Remote Sens Environ 103:312–323. doi:10.1016/j.rse.2005.10.028

    Article  Google Scholar 

  • Gamon JA, Peñuelas J, Field CB (1992) A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ 41:35–44. doi:10.1016/0034-4257(92)90059-S

    Article  Google Scholar 

  • Gitelson AA, Merzlyak MN (1996) Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. J Plant Physiol 148:94–500

    Google Scholar 

  • Gregory JM, Oerlemans J (1998) Simulated future sea-level rise due to glaciermelt based on regionally and seasonally resolved temperature changes. Nature 391:474–476. doi:10.1038/35119

    Article  CAS  Google Scholar 

  • Hacker SD, Bertness MD (1995) Morphological and physiological consequences of a positive plant interaction. Ecology 76:2165–2175. doi:10.2307/1941690

    Article  Google Scholar 

  • Hayden BP, Deuser RD, Callahan JT, Shugart HH (1991) Long-term research at the Virginia Coast Reserve. Bioscience 41:310–318. doi:10.2307/1311584

    Article  Google Scholar 

  • Hayden BP, Santos MCFV, Shao G, Kochel RC (1995) Geomorphological controls on coastal vegetation at the Virginia Coast Reserve. Geomorphology 13:283–300. doi:10.1016/0169-555X(95)00032-Z

    Article  Google Scholar 

  • Inoue Y, Peñuelas J, Miyata A, Mano M (2008) Normalized difference spectral indices for estimating photosynthetic efficiency at a canopy scale derived from hyperspectral and CO2 flux measurements. Remote Sens Environ 112:156–172. doi:10.1016/j.rse.2007.04.011

    Article  Google Scholar 

  • Jensen JR (2005) Introductory digital image processing: a remote sensing perspective, 3rd edn. Prentice Hall, Upper Saddle River, 526 pp

  • Krovetz DK, Porter JH, Spitler JR, Smith PH (2007) Meteorological measurements of the Virginia Coast Reserve LTER. Data of the Virginia Coast Reserve long-term ecological research project VCR97018

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. doi:10.1046/j.0016-8025.2001.00808.x

    Article  PubMed  CAS  Google Scholar 

  • Naumann JC, Young DR, Anderson JE (2007) Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species. Physiol Plant 131:422–433. doi:10.1111/j.1399-3054.2007.00973.x

    Article  PubMed  CAS  Google Scholar 

  • Naumann JC, Young DR, Anderson JE (2008a) Leaf chlorophyll fluorescence, reflectance, and physiological response to freshwater and saltwater flooding in the evergreen shrub, Myrica cerifera. Environ Exp Bot 63:402–409. doi:10.1016/j.envexpbot.2007.12.008

    Article  CAS  Google Scholar 

  • Naumann JC, Young DR, Anderson JE (2008b) Linking physiological responses, chlorophyll fluorescence and hyperspectral imagery to detect salinity stress using the physiological reflectance index in the coastal shrub, Myrica cerifera. Remote Sens Environ. doi:10.1016/j.rse.2008.06.004

    Google Scholar 

  • Oosting HJ, Billings WD (1942) Factors effecting vegetational zonation on coastal dunes. Ecology 23:131–141. doi:10.2307/1931081

    Article  CAS  Google Scholar 

  • Peñuelas J, Filella I, Briel C, Serrano L, Savé R (1993) The reflectance at the 950–970 nm region as an indicator of plant water status. Int J Remote Sens 14:1887–1905. doi:10.1080/01431169308954010

    Article  Google Scholar 

  • Peñuelas J, Llusià J, Piñol J, Filella I (1997) Photochemical reflectance index and leaf photosynthetic radiation-use-efficiency assessment in Mediterranean trees. Int J Remote Sens 18:2863–2868. doi:10.1080/014311697217387

    Article  Google Scholar 

  • Peñuelas J, Filella I, Llusià J, Siscart D, Piñol J (1998) Comparative field study of spring and summer leaf gas exchange and photobiology of the mediterranean trees Quercus ilex and Phillyrea latifolia. J Environ Exp Bot 319:229–238. doi:10.1093/jexbot/49.319.229

    Article  Google Scholar 

  • Peñuelas J, Munné-Bosch S, Llusià J, Filella I (2004) Leaf reflectance and photo- and antioxidant protection in field-grown summer-stressed Phillyrea angustifolia. Optical signals of oxidative stress? New Phytol 162:115–124

    Article  Google Scholar 

  • Shao G, Shugart HH, Young DR (1995) Simulation of transpiration sensitivity to environmental changes for shrub (Myrica cerifera) thickets on a Virginia barrier island. Ecol Modell 78:235–248. doi:10.1016/0304-3800(93)E0091-G

    Article  Google Scholar 

  • Stalter R, Odum WE (1993) Maritime communities. In: Martin WM, Boyce SG, Echternacht C (eds) Biodiversity of the Southeastern United States: lowland terrestrial communities. Wiley, New York

    Google Scholar 

  • Suárez L, Zarco-Tejada PJ, Sepulcre-Cantó G, Pérez-Priego O, Miller JR, Jiménez-Muñoz JC et al (2008) Assessing canopy PRI for water stress detection with diurnal airborne imagery. Remote Sens Environ 112:560–575. doi:10.1016/j.rse.2007.05.009

    Article  Google Scholar 

  • Thorhaug A, Richardson AD, Berlyn GP (2006) Spectral reflectance of Thalassia testudinum (Hydrocharitaceae) seagrass: low salinity effects. Am J Bot 93:110–117. doi:10.3732/ajb.93.1.110

    Article  CAS  Google Scholar 

  • Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–366. doi:10.1007/BF02180062

    Article  Google Scholar 

  • Winkel T, Méthy M, Thénot F (2002) Radiation use efficiency, chlorophyll fluorescence, and reflectance indices associated with ontogenic changes in water-limited Chenopodium quinoa leaves. Photosynthetica 40:227–232. doi:10.1023/A:1021345724248

    Article  CAS  Google Scholar 

  • Young DR (1992) Photosynthetic characteristics and potential moisture stress for the actinorhizal shrub, Myrica cerifera, on a Virginia barrier island. Am J Bot 79:2–7. doi:10.2307/2445189

    Article  Google Scholar 

  • Young DR, Shao G, Brinson MM (1991) The impact of the October 1991 northeastern storm on barrier island shrub thickets (Myrica cerifera). J Coast Res 11:1322–1328

    Google Scholar 

  • Young DR, Erickson DL, Semones SW (1994) Salinity and the small-scale distribution of three barrier island shrubs. Can J Bot 72:1365–1372. doi:10.1139/b94-167

    Article  Google Scholar 

  • Young DR, Shao G, Porter JH (1995) Spatial and temporal growth dynamics of barrier island shrub thickets. Am J Bot 82:628–645. doi:10.2307/2445422

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

  • Zarco-Tejada PJ, Miller JR, Mohammed GH, Noland TL, Sampson PH (2000) Chlorophyll fluorescence effects on vegetation apparent reflectance II. Laboratory and airborne canopy-level measurements with hyperspectral data. Remote Sens Environ 74:596–608

    Article  Google Scholar 

  • Zarco-Tejada PJ, Pushnik JC, Dobrowski S, Ustin SL (2003) Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects. Remote Sens Environ 84:283–294. doi:10.1016/S0034-4257(02)00113-X

    Article  Google Scholar 

  • Zhang K, Douglas BC, Leatherman SP (2000) Twentieth-century storm activity along the US east coast. J Clim 13:1748–1761. doi :10.1175/1520-0442(2000)013<1748:TCSAAT>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgements

Clint Smith provided the PAM-2000 fluorometer. The authors thank SpectIR Corporation and Charles Bachmann for the hyperspectral data. Spencer Bissett, Paul Cuomo, and Jackie Vick assisted with field collections. Steven Brantley provided comments on an earlier draft of this manuscript. Some data used in this publication was provided by the Virginia Coast Reserve LTER project, which was supported by National Science Foundation grants BSR-8702333-06, DEB-9211772, DEB-9411974, DEB-0080381, and DEB-0621014. This research was supported by a grant to DRY from the United States Army Research Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie C. Naumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumann, J.C., Young, D.R. & Anderson, J.E. Spatial variations in salinity stress across a coastal landscape using vegetation indices derived from hyperspectral imagery. Plant Ecol 202, 285–297 (2009). https://doi.org/10.1007/s11258-008-9482-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-008-9482-2

Keywords

Navigation