Skip to main content

Advertisement

Log in

Plant-mycorrhizal fungi associations along an urbanization gradient: implications for tree seedling survival

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Mycorrhizal fungi symbioses can be critical determining if established seedlings survive or not. Currently, in remnant forests, plants and their fungal symbionts are exposed to varied anthropomorphic effects related to urbanization, however, little is known about their impact on this association. We investigated the relationship between mycorrhizal fungi and tree seedling survival along an urbanization gradient. We planted three species of temperate tree seedlings (Acer rubrum, Carya ovata, and Quercus rubra) in three landscapes: urban, suburban, and rural. We measured the percent of root length colonized by mycorrhizal fungi and monitored survival during their first growing season. We analyzed mycorrhizal colonization as a function of landscape type (urban-rural) and additional variables known to contribute to mycorrhizal colonization (phosphorus, nitrogen, initial plant height). We then analyzed seedling survival as a function of the degree of mycorrhizal fungi colonization associated with the landscape gradient and of additional environmental factors (light and soil moisture). Within a species we found no changes in the levels of mycorrhizal fungi colonization across the urbanization gradient. Each species, however, had markedly different levels of colonization. Survival of A. rubrum was independent of mycorrhizal colonization, while C. ovata and Q. rubra had a significant positive response to increased mycorrhizal fungi. These findings highlight the resilience of mycorrhizal communities across the rural-urban gradient typical of this region, but they also underscore the potential sensitivity of some tree species to lower levels of mycorrhizal fungi colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrams MD, Ruffner CM (1995) Physiographic analysis of witness-tree distribution (1765-1798) and present Forest cover through north Central Pennsylvania. Can J For Res 25(4):659–668

    Article  Google Scholar 

  • Bainard LD, Klironomos JN, Gordon AM (2011) The mycorrhizal status and colonization of 26 tree species growing in urban and rural environments. Mycorrhiza 21(2):91–96

    Article  PubMed  Google Scholar 

  • Barnes GV, Wagner WH (2004) Michigan trees. The University of Michigan Press, Ann Arbor, Michigan

    Google Scholar 

  • Bingham MA, Simard S (2012) Ectomycorrhizal networks of Pseudotsuga menziesii var glauca trees facilitate establishment of conspecific seedlings under drought. Ecosystems 15(2):188–199

    Article  CAS  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320(1–2):37–77

    Article  CAS  Google Scholar 

  • Burns RM, Honkala BH (1990) Silvics of North America. Agriculture handbook 654. US Department of Agriculture, Forest Service, Washington, DC 877 p

    Google Scholar 

  • Canham CD, Kobe RK, Latty EF, Chazdon RL (1999) Interspecific and intraspecific variation in tree seedlings survival: effects of allocation to roots versus carbohydrates reserves. Oecologia 121:1–11

    Article  PubMed  Google Scholar 

  • City of Ann Arbor (2014) City of Ann Arbor Urban and Community Forest Management Plan. Ann Arbor, MI

  • Comas LH, Eissenstat DM (2009) Patterns in root trait variation among 25 co-existing north American forest species. New Phytol 182(4):919–928

    Article  CAS  PubMed  Google Scholar 

  • Cousins JR, Hope D, Gries C, Stutz JC (2003) Preliminary assessment of arbuscular mycorrhizal fungal diversity and community structure in an urban ecosystem. Mycorrhiza 13(6):319–326

    Article  PubMed  Google Scholar 

  • Dickie IA, Koide RT, Steiner KC (2002) Influences of established trees on mycorrhizas, nutrition, and growth of Quercus rubra. Ecol Monogr 72(4):505–521

    Article  Google Scholar 

  • Duchicela J, Sullivan TS, Bontti E, Bever JD (2013) Soil aggregate stability increase is strongly related to fungal community succession along an abandoned agricultural field chronosequence in the Bolivian Altiplano. J Appl Ecol 50:1266–1273

    CAS  Google Scholar 

  • Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10(2):484–496

    Article  Google Scholar 

  • File AL, Klironomos J, Maherali H, Dudley SA (2012) Plant kin recognition enhances abundance of symbiotic microbial partner. PLoS One 7(9):15–17

    Article  Google Scholar 

  • Fitter AH, Heinemeyer A, Husband R, Olsen E, Ridgway KP, Staddon PL (2004) Global environmental change and the biology of arbuscular mycorrhizas: gaps and challenges. Can J Bot 82:1133–1139

    Article  Google Scholar 

  • Gómez-Aparicio L, Perez-Ramos IM, Mendoza L, Quero JL, Castro J, Zamora R, Maranon T (2008) Oak seedling survival and growth along resource gradients in Mediterranean forests: implications for regeneration in current and future environmental scenarios. Oikos 117:1683–1699

    Article  Google Scholar 

  • Guerrero CC, Günthardt-Goerg MS, Vollenweider P (2013) Foliar symptoms triggered by ozone stress in irrigated holm oaks from the city of Madrid, Spain. PLoS One 8(7):e69171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartman JP, Buckley DS, Sharik TL (2005) Differential success of oak and red maple regeneration in oak and pine stands on intermediate-quality sites in northern lower Michigan. For Ecol Manag 216(1–3):77–90

    Article  Google Scholar 

  • Hartnett DC, Wilson GWT (1999) Mycorrhizae influence plant community structure and diversity in Tallgrass prairie. Ecology 80(4):1187–1195

    Article  Google Scholar 

  • Horton TR, Bruns TD, Parker VT (1999) Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can J Bot 77(1):93–102

    Google Scholar 

  • Hosseini Bai S, Xu Z, Blumfield TJ, Reverchon F (2015) Human footprints in urban forests: implication of nitrogen deposition for nitrogen and carbon storage. J Soils Sediments 15(9):1927–1936

    Article  CAS  Google Scholar 

  • Ibáñez I, McCarthy-Neumann S (2014) Integrated assessment of the direct and indirect effects of resource gradients on tree species recruitment. Ecology 95:364–375

    Article  PubMed  Google Scholar 

  • Ibáñez I, McCarthy-Neumann S (2016) Effects of mycorrhizal fungi on tree seedling growth: quantifying the parasitism–mutualism transition along a light gradient. Can J For Res 46:48–57

    Article  Google Scholar 

  • Jin L, Wang S, Wang X, Shen Y (2009) Seed size influences arbuscular mycorrhizal symbiosis across leguminous host-plant species at the seedling stage. Symbiosis 49(3):111–116

    Article  Google Scholar 

  • Johnson NC, Wilson GWT, Wilson JA, Miller RM, Bowker MA (2015) Mycorrhizal phenotypes and the law of the minimum. New Phytol 205(4):1473–1484

    Article  CAS  PubMed  Google Scholar 

  • Karliński L, Jagodziński AM, Leski T, Butkiewicz P, Brosz M, Rudawska M (2014) Fine root parameters and mycorrhizal colonization of horse chestnut trees (Aesculus hippocastanum L) in urban and rural environments. Landsc Urban Plan 127:154–163

    Article  Google Scholar 

  • Karpati AS, Handel SN, Dighton J, Horton TR (2011) Quercus rubra-associated ectomycorrhizal fungal communities of disturbed urban sites and mature forests. Mycorrhiza 21(6):537–547

    Article  PubMed  Google Scholar 

  • Katz DSW, Lovett GM, Canham CD, Reilly CMO (2010) Legacies of land use history diminish over 22 years in a forest in southeastern New York author. Torrey Botanical Society 137(2/3):236–251

    Article  Google Scholar 

  • Kielbaso J (1990) Trends and issues in City forests. J Arboric 16(3):69–76

    Google Scholar 

  • Lewis JD, Licitra J, Tuininga AR, Sirulnik A, Turner GD, Johnson J (2008) Oak seedling growth and ectomycorrhizal colonization are less in eastern hemlock stands infested with hemlock woolly adelgid than in adjacent oak stands. Tree Physiol 28(4):629–636

    Article  PubMed  Google Scholar 

  • Martin LJ, Blossey B, Ellis E (2012) Mapping where ecologists work: biases in the global distribution of terrestrial ecological observations. Front Ecol Environ 10(4):195–201

    Article  Google Scholar 

  • Martínez-García LB, Ochoa-Hueso RL, Manrique E, Pugnaire FI (2015) Different mycorrhizal fungal strains determine plant community response to nitrogen and water availability. J Plant Nutr Soil Sci 178:146–154. doi:10.1002/jpln.201300548

    Article  Google Scholar 

  • McGonigle ATP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular- arbuscular mycorrhizal fungi. New Phytol 115(3):495–501

    Article  Google Scholar 

  • Menkis A, Vasiliauskas R, Taylor AFS, Stenlid J, Finlay R (2007) Afforestation of abandoned farmland with conifer seedlings inoculated with three ectomycorrhizal fungi - impact on plant performance and ectomycorrhizal community. Mycorrhiza 17(4):337–348

    Article  CAS  PubMed  Google Scholar 

  • Miao S (1995) Acorn mass and seedling growth in Quercus rubra in response to elevated CO2. J Veg Sci 6(5):697–700

    Article  Google Scholar 

  • Millar JA, Ballhorn DJ (2013) Effect of mycorrhizal colonization and light limitation on growth and reproduction of lima bean (Phaseolus lunatus L). J Appl Bot Food Qual 86:172–179

    Google Scholar 

  • Mordecai EA (2012) Soil moisture and fungi affect seed survival in California grassland annual plants. PLoS One 7(6):e039083

    Article  Google Scholar 

  • Nara K, Hogetsu T (2004) Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species source. Ecology 85(6):1700–1707

    Article  Google Scholar 

  • O’Brien MJ, Gomola CE, Horton TR (2011) The effect of forest soil and community composition on ectomycorrhizal colonization and seedling growth. Plant Soil 341:321–331

    Article  Google Scholar 

  • O’Brien AM, Ettinger AK, HilleRisLambers J (2012) Conifer growth and reproduction in urban forest fragments: predictors of future responses to global change? Urban Ecosyst 15(4):879–891

    Article  Google Scholar 

  • Oke TR (1973) City size and the urban Heat Island. Atmos Environ 7:769–777

    Article  Google Scholar 

  • Parker WC, Pitt G, Morneault AE (2009) Influence of woody and herbaceous competition on microclimate and growth of eastern white pine (Pinus strobus L) seedlings planted in a Central Ontario clearcut. For Ecol Manag 258(9):2013–2025

    Article  Google Scholar 

  • Phillips RP, Fahey TJ (2006) Tree species and mycorrhizal associations influence the magnitude of Rhizosphere effects. Ecology 87(5):1302–1313

    Article  PubMed  Google Scholar 

  • Propster JR, Johnson NC (2015) Uncoupling the effects of phosphorus and precipitation on arbuscular mycorrhizas in the Serengeti. Plant Soil 388(1–2):21–34

    Article  CAS  Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria URL http://www.R-projectorg/

  • Reinmann AB, Templer PH (2016) Reduced winter snowpack and greater soil frost reduce live root biomass and stimulate radial growth and stem respiration of red maple (Acer rubrum) trees in a mixed-hardwood. Forest Ecosyst 19(1):129–141

    Article  CAS  Google Scholar 

  • Rillig MC, Wright SF, Shaw MR, Field CB, Artificial CB (2002) Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland. Oikos 97(1):52–58

    Article  Google Scholar 

  • Rodríguez-Calcerrada J, Cano FJ, Valbuena-Carabaña M, Gil L, Aranda I (2010) Functional performance of oak seedlings naturally regenerated across microhabitats of distinct overstory canopy closure. New For 39(2):245–259

    Article  Google Scholar 

  • Roger A, Colard A, Angelard C, Sanders IR (2013) Relatedness among arbuscular mycorrhizal fungi drives plant growth and intraspecific fungal coexistence. ISME J 7(11):2137–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruddiman WF (2013) The Anthropocene. Annu Rev Earth Planet Sci 41(1):45–68

    Article  CAS  Google Scholar 

  • Setala H, Viippola V, Rantalainen AL, Pennanen A, Yli-Pelkonen V (2013) Does urban vegetation mitigate air pollution in northern conditions? Environ Pollut 183:104–112

    Article  CAS  PubMed  Google Scholar 

  • Skogley E (1992) The universal Bioavaliability enviroment/soil test Unibest. Commun Soil Sci Plant Anal 23(17–20):2225–2246

    Article  CAS  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit (with discussion). J R Stat Soc 64:583–639

    Article  Google Scholar 

  • Sun FF, Wen DZ, Kuang YW, Li J, Zhang JG (2009) Concentrations of Sulphur and heavy metals in needles and rooting soils of Masson pine (Pinus massoniana L) trees growing along an urban-rural gradient in Guangzhou, China. Environ Monit Assess 154(1–4):263–274

    Article  CAS  PubMed  Google Scholar 

  • Teste FP, Simard SW (2008) Mycorrizal networks and distance from mature trees Alter patterns of competition and facilitation in dry Douglas-fir forests. Oecologia 158(2):193–203

    Article  PubMed  Google Scholar 

  • Thomas A, O'Hara R, Ligges U, Sturts S (2006) Making BUGS Open. R News 6:12–17

    Google Scholar 

  • Thomas-Van Gundy M, Rentch J, Adams MB, Carson W (2014) Reversing legacy effects in the understory of an oak-dominated forest. Can J For Res 44(4):350–364

    Article  Google Scholar 

  • Tinker PB, Gildon A (1983) Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants. New Phytol 95(2):247–261

    Article  Google Scholar 

  • Treseder K (2004) Meta-Alalysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164(2):347–355

    Article  Google Scholar 

  • Treseder KK (2013) The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371(1–2):1–13

    Article  CAS  Google Scholar 

  • Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147(1):189–200

    Article  CAS  Google Scholar 

  • US Census (2010) QuickFacts, Ann Arbor city, Michigan United States Census Bureau http://wwwcensusgov/quickfacts/table/RHI105210/2603000,26161

  • US Census (2014) Annual Estimates of the Resident Population for Incorporated Places of 50,000 or More, Ranked by July 1, 2014 Population: April 1, 2010 to July 1, 2014 - United States -- Places of 50,000+ Population 2014 Population Estimates United States Census Bureau http://factfindercensus.gov/faces/tableservices/jsf/pages/productviewxhtml?src=bkmk

  • Vailshery LS, Jaganmohan M, Nagendra H (2013) Effect of street trees on microclimate and air pollution in a tropical city. Urban For Urban Green 12(3):408–415

    Article  Google Scholar 

  • Van Der Heijden MGA, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97:1139–1150

    Article  Google Scholar 

  • Van Der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79(6):2082–2091

    Article  Google Scholar 

  • Woodward C, Johnson DW, Meadows MW, Miller WW, Hynes MM, Robertson CM (2013) Nutrient hot spots in a sierra Nevada Forest soil: temporal characteristics and relations to microbial communities. Soil Sci 178(11):585–595

    Article  CAS  Google Scholar 

  • Xian G, Homer C, Dewitz J, Fry J, Hossain N, Wickham J (2011). The change of impervious surface area between 2001 and 2006 in the conterminous United States. Photogramm Eng Remote Sens 77(8): 758–762

  • Yang Y, Song Y, Scheller HV, Ghosh A, Ban Y, Chen H, Tan M (2015) Community structure of arbuscular mycorrhizal fungi associated with Robinia pseudoacacia in uncontaminated and heavy metal contaminated soils. Soil Biol Biochem 86:146–158

    Article  CAS  Google Scholar 

  • Youngsteadt E, Dale AG, Terando AJ, Dunn RR, Frank SD (2015) Do cities simulate climate change? A comparison of herbivore response to urban and global warming. Glob Chang Biol 21(1):97–105

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by the National Science Foundation to I. Ibáñez (award No.: DEB 1252664).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inés Ibáñez.

Appendix

Appendix

Table 2 Seed sources
Table 3 Soil nutrient information by plot. Soil nutrient amounts are in parts per million of extracted solution (ppm in extracted solution, 50 ml 2 M HCl). Soil Nutrient data collected in Unibest capsules and analyzed by Unibest International

Model code

figure aa
figure ab
Table 4 Parameter values from the mycorrhizal fungi colonization analysis
Fig. 6
figure 6

Observed survival along the studied landscape-canopy site combinations

Fig. 7
figure 7

Mycorrhizal colonization per plot versus plot survival. Dots indicate data, lines are predictions

Table 5 Parameter values from the seedling survival colonization analysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonn, N., Ibáñez, I. Plant-mycorrhizal fungi associations along an urbanization gradient: implications for tree seedling survival. Urban Ecosyst 20, 823–837 (2017). https://doi.org/10.1007/s11252-016-0630-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-016-0630-5

Key words

Navigation