Skip to main content
Log in

Genetic diversity and population structure of South African smallholder farmer sheep breeds determined using the OvineSNP50 beadchip

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

A population structure study was performed in South African ovine populations using the OvineSNP50 beadchip. Blood samples were obtained from 295 sheep of which 172 had been identified as smallholder Dorpers, 4 smallholder White Dorpers, 46 purebred Dorpers, 26 purebred South African Mutton Merinos and 47 purebred Namaqua Afrikaners. Blood from the latter three breeds were obtained from a resource flock maintained on the Nortier research farm. Genetic diversity was estimated using allelic richness (A r), observed heterozygosity (H o), expected heterozygosity (H e) and inbreeding coefficient (F). Population structure analysis was performed using fastSTRUCTURE to determine the breed composition of each genotyped individual. The Namaqua Afrikaner had the lowest H e of 0.280 ± 0.18 while the H e of smallholder Dorper, Dorper and South African Mutton Merino did not differ and were 0.364 ± 0.13, 0.332 ± 0.16 and 0.329 ± 0.17, respectively. The average inbreeding coefficient was highest for the pure breeds, Namaqua Afrikaner, Dorper and South African Mutton Merino compared to the average inbreeding coefficient for the smallholder Dorper population. The smallholder Dorper were introgressed with Namaqua Afrikaner, South African Mutton Merino and White Dorpers. Similarly, the smallholder Dorper population was more genetically diverse than the purebred Dorper, South African Mutton Merino and Namaqua Afrikaner from the research farm. The higher genetic diversity among the smallholder sheep may be advantageous for their fitness and can be used to facilitate selective breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander, D.H., Novembre, J. & Lange, K., 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research 19, 1655–1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buduram, P., 2004. Genetic characterization of South African sheep breeds using DNA markers. (Unpublished M.Sc. thesis. University of Free State. South Africa)

  • Ercanbrack, S.K. & Knight, A.D., 1991. Effects of inbreeding on reproduction and wool production of Rambouillet, Targhee, and Columbian ewes. Journal of Animal Sciences 69, 4734–4744.

    CAS  Google Scholar 

  • Gizaw, S., van Arendonk, J.A.M., Valle-Zarate, A., Haile, A., Rischkowsky, B., Dessie, T., & Mwai, A.O., 2014. Breeding programmes for smallholder sheep farming systems: II Optimization of cooperative village breeding schemes Journal of Animal Breeding and Genetics 131, 350–357.

    Article  CAS  PubMed  Google Scholar 

  • Goddard, M., 2009. Fitness traits in animal breeding programs, in: Adaptation and fitness in farm animal populations: Evolutionary and breeding perspectives on genetic resource management. Eds. Van der Werf, J., H.-U. Graser, R., Frankham, & C., Gondro, 41–52 Springer Science & Business Media.

  • Grobler, H.J.F., 2010. Evaluation survey at extensive farms in the Central Karoo 2009. Agriprobe, June, 6–9.

    Google Scholar 

  • Hlophe, S.R., 2011. Genetic variation between and within six selected south African sheep breeds using random amplified polymorphic DNA and protein markers, Master’s thesis, University of Zululand, South Africa.

    Google Scholar 

  • Kijas, J.W., Townley, D., Dalrymple, B.P., Heaton, M.P., Maddox, J.F., McGrath, A., Wilson, P., Ingersoll, R.G., McCulloch, R., McWilliam, S.,Tang, D., McEwan, J., Cockett, N., Oddy, V.H., Nicholas, F.W., & Raadsma, H., for the International Sheep Genomics Consortium. 2009. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS one 4, e4668.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kijas, J.W., Lenstra, J.A., Hayes, B., Boitard, S., Porto Neto, L.R, San Cristobal, M., Servin, B., McCulloch, R., Whan, V., Gietzen, K., Paiva, S., Barendse, W., Ciani, E., Raadsma, H., McEwan, J., Dalrymple, B. & the International Sheep Genomics Consortium Members. 2012. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol 10, e1001258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leroy, G., 2014. Inbreeding depression in livestock species: review and meta-analysis. Animal Genetics 45, 618–628.

    Article  CAS  PubMed  Google Scholar 

  • Marais P.G., 2007. Evaluation of the genetic potential for growth and wool production of typical Transkei ewes and rams. Research report of the Grootfontein Agricultural Development Institute, 2007. Private Bag x529, Middelburg 5900, South Africa. p. 33–34.

  • Milne, C., 2000. The History of the Dorper. Small Ruminant Research 36, 99–102.

    Article  CAS  PubMed  Google Scholar 

  • Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S., & Berrabucci, U., 2010. Effects of climate change on animal production and sustainability of livestock systems. Livestock Science 130, 57–69.

    Article  Google Scholar 

  • Novembre, J., & Stephens, M., 2008. Interpreting principal components analyses of spatial population genetic variation. Nature Genetics 40, 646–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A & Reich, D., 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics 38, 904–909.

    Article  CAS  PubMed  Google Scholar 

  • Pritchard, J.K., Stephens, M. & Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945–949.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller, J., Sklar, P., de Bakker, P.I.W., Daly, M.J. & Sham, P.C., 2007. PLINK: a toolset for whole-genome association and population-based linkage analysis. American Journal of Human Genetics 81, 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qwabe, S.O., Van Marle-Köster, E. & Visser, C., 2013. Genetic diversity and population structure of the endangered Namaqua Afrikaner sheep. Tropical Animal Health Production 45, 511–516.

    Article  PubMed  Google Scholar 

  • Raj, A., Stephens, M. & Pritchard, J.K., 2014. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics. 197, 573–589.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramsay, K. H., Harris, L. & Kotze, A., 2001. Landrace breeds: South Africa’s indigenous and locally developed farm animals. Publication Farm Animal Conservation Trust, ISBN: 0–620–25493-9.

  • Sandenbergh, L., 2015. Identification of SNPs associated with robustness and greater reproductive success in South African Merino using SNP chip technology. (Unpublished PhD thesis. University of Stellenbosch)

  • Sandenbergh, L. Cloete, S.W.P. Roodt-Wilding, R., Snyman, M.A. & Van der Merwe, A.E., 2015. Genetic diversity and population structure of four South African sheep breeds. Proceedings of the Association for the Advancement of Breeding and Genetics 21, 294–297.

    Google Scholar 

  • Schoeman, S.J., Cloete, S.W.P. & Oliver, J.J., 2010. Returns on investment in sheep and goat breeding in South Africa. Livestock Science 130, 70–82.

    Article  Google Scholar 

  • Snyman, M.A., 2014. South African sheep breeds: Namaqua Afrikaner. Info-pack ref. 2014/023. Grootfontein Agricultural Development Institute.

  • Snyman, M. A., Buys, T. & Jonker, M. L., 2005. Production and reproduction performance of Namaqua Afrikaner sheep. 6th Global Conference on the Conservation of Domestic Animal Genetic Resource, Magalies Park, South Africa, 9–13 October

  • Szpiech, Z.A., Jakobsson, M. & Rosenberg, N.A., 2008. ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24, 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Wyk, J.B., Fair, M.D. & Cloete, S.W.P., 2009. Case study: The effect of inbreeding on the production and reproduction traits in the Elsenburg Dormer sheep stud. Livestock Science 120, 218–224.

    Article  Google Scholar 

  • Vignal, A., Milan, D., Sancristobal, M. & Eggen, A., 2002. A review on SNP and other types of molecular markers and their use in animal genetics. Genetic Selection and Evolution 34, 275–305.

    Article  CAS  Google Scholar 

  • Visser, C., Lashmar, S.F., van Marle-Köster, E., Poli, M.A. & Allain, D. 2016. Genetic diversity and population structure in South African, French and Argentinian Angora Goats from Genome-Wide SNP data. PLOS One 11, 0154353.

    Google Scholar 

  • Wiener, G., Lee, G.J. & Wooliams, J.A., 1992. Effects of rapid inbreeding and crossing of inbred lines on the body weight growth of sheep. Anim. Prod. 55, 89–99.

    Article  Google Scholar 

  • Zheng, X., Levine, D., Shen, J., Gogarten, S.M., Laurie, C., & Weir, B.S., 2012. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwane, A.A., Maiwashe, A., Makgahlela, M.L., Choudbury, A., Taylor, J.F., & van Marle-Köster, E., 2016. Genome-wide identification of breed-informative single-nucleotide polymorphisms in three South African indigenous cattle breeds. South African Journal of Animal Science, 46, 302–311.

    Google Scholar 

Download references

Acknowledgements

We acknowledge the smallholder farmers from the Ebenheaser community for allowing us access to their sheep flocks. We appreciate the assistance of the Western Cape Department of Agriculture for providing data and genotypes for the Nortier Experimental sheep flock. We also acknowledge funding obtained from NUFFIC for genotyping and a Thuthuka award from the National Research foundation (NRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annelin H. Molotsi.

Ethics declarations

Statement of animal rights

Approval for this research was sought and received from the Departmental Ethics Committee for Research on Animals (DECRA) approval numbers of R12/53 for smallholder flocks and R14/100 for the experimental flock from the Western Cape Department of Agriculture.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molotsi, A.H., Taylor, J.F., Cloete, S.W. et al. Genetic diversity and population structure of South African smallholder farmer sheep breeds determined using the OvineSNP50 beadchip. Trop Anim Health Prod 49, 1771–1777 (2017). https://doi.org/10.1007/s11250-017-1392-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-017-1392-7

Keywords

Navigation