Skip to main content
Log in

Hybrid Wear-Reducing Micro-pits Counterface Texture Against Polymeric Solid Lubricants

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We report a hybrid wear-reducing surface by sliding steel counterfaces with pre-textured micro-pits pattern against polymeric solid lubricants. When being slid against a freshly prepared pin of the same polymer material, the hybrid surface significantly reduced wear rate of the polymer and steel counterface by up to 69% and 550% compared with the untextured unconditioned surface for the four different polymers surveyed in this study. Polymer wear generally decreased with increased iteration round of preconditioning while counterface wear was more dependent on transfer film and wear track topography. Worn counterface profilometry analysis suggested the preconditioned hybrid surface improved debris retention within the micro-pits which might mitigate wear by acting as debris reservoirs at the sliding interface and promoting transfer film formation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Burris, D.L., Boesl, B., Bourne, G.R., Sawyer, W.G.: Polymeric nanocomposites for tribological applications. Macromol. Mater. Eng. 292, 387–402 (2007)

    Article  CAS  Google Scholar 

  2. Sawyer, W.G., Argibay, N., Burris, D.L., Krick, B.A.: Mechanistic studies in friction and wear of bulk materials. Annu. Rev. Mater. Res. 44, 395–427 (2014). https://doi.org/10.1146/annurev-matsci-070813-113533

    Article  Google Scholar 

  3. Ye, J., Burris, D.L., Xie, T.: A review of transfer films and their role in ultra-low-wear sliding of polymers. Lubricants. 4, 4 (2016). https://doi.org/10.3390/lubricants4010004

    Article  Google Scholar 

  4. Ye, J., Sun, W., Zhang, Y., Liu, X., Liu, K.: Measuring evolution of transfer film–substrate interface using low wear alumina PTFE. Tribol. Lett. (2018). https://doi.org/10.1007/s11249-018-1054-6

    Article  Google Scholar 

  5. Wieleba, W.: The statistical correlation of the coefficient of friction and wear rate of PTFE composites with steel counterface roughness and hardness. Wear 252, 719–729 (2002). https://doi.org/10.1016/S0043-1648(02)00029-7

    Article  CAS  Google Scholar 

  6. Franklin, S.E., de Kraker, A.: Investigation of counterface surface topography effects on the wear and transfer behaviour of a POM–20% PTFE composite. Wear 255, 766–773 (2003). https://doi.org/10.1016/S0043-1648(03)00193-5

    Article  CAS  Google Scholar 

  7. Blanchet, T.A., Kandanur, S.S., Schadler, L.S.: Coupled effect of filler content and countersurface roughness on PTFE nanocomposite wear resistance. Tribol. Lett. 40, 11–21 (2009). https://doi.org/10.1007/s11249-009-9519-2

    Article  CAS  Google Scholar 

  8. Laux, K.A., Schwartz, C.J.: Influence of linear reciprocating and multi-directional sliding on PEEK wear performance and transfer film formation. Wear 301, 727–734 (2013). https://doi.org/10.1016/j.wear.2012.12.004

    Article  CAS  Google Scholar 

  9. Burris, D.L., Sawyer, W.G.: Tribological sensitivity of PTFE/alumina nanocomposites to a range of traditional surface finishes. Tribol. Trans. 48, 147–153 (2005). https://doi.org/10.1080/05698190590923842

    Article  CAS  Google Scholar 

  10. Harris, K.L., Curry, J.F., Pitenis, A.A., Rowe, K.G., Sidebottom, M.A., Sawyer, W.G., Krick, B.A.: Wear debris mobility, aligned surface roughness, and the low wear behavior of filled polytetrafluoroethylene. Tribol. Lett. 60, 1–8 (2015). https://doi.org/10.1007/s11249-015-0581-7

    Article  CAS  Google Scholar 

  11. Ye, J., Tao, B., Sun, W., Haidar, D.R., Alam, K.I., Liu, K., Burris, D.L.: The competing effects of counterface peaks and valleys on the wear and transfer of ultra-low wear alumina–PTFE. Tribol. Lett. 66, 12 (2018). https://doi.org/10.1007/s11249-017-0966-x

    Article  CAS  Google Scholar 

  12. Li, J., Xiong, D., Dai, J., Huang, Z., Tyagi, R.: Effect of surface laser texture on friction properties of nickel-based composite. Tribol. Int. 43, 1193–1199 (2010). https://doi.org/10.1016/j.triboint.2009.12.044

    Article  CAS  Google Scholar 

  13. Hu, T., Hu, L., Ding, Q.: Effective solution for the tribological problems of Ti-6Al-4V: combination of laser surface texturing and solid lubricant film. Surf. Coat. Technol. 206, 5060–5066 (2012). https://doi.org/10.1016/j.surfcoat.2012.06.014

    Article  CAS  Google Scholar 

  14. Wu, Z., Deng, J., Zhang, H., Lian, Y., Zhao, J.: Tribological behavior of textured cemented carbide filled with solid lubricants in dry sliding with titanium alloys. Wear 292–293, 135–143 (2012). https://doi.org/10.1016/j.wear.2012.05.021

    Article  CAS  Google Scholar 

  15. Hu, T., Zhang, Y., Hu, L.: Tribological investigation of MoS2 coatings deposited on the laser textured surface. Wear 278–279, 77–82 (2012). https://doi.org/10.1016/j.wear.2012.01.001

    Article  CAS  Google Scholar 

  16. Li, J., Xiong, D., Zhang, Y., Zhu, H., Qin, Y., Kong, J.: Friction and wear properties of MoS2-overcoated laser surface-textured silver-containing nickel-based alloy at elevated temperatures. Tribol. Lett. 43, 221–228 (2011). https://doi.org/10.1007/s11249-011-9797-3

    Article  CAS  Google Scholar 

  17. Basnyat, P., Luster, B., Muratore, C., Voevodin, A.A., Haasch, R., Zakeri, R., Kohli, P., Aouadi, S.M.: Surface texturing for adaptive solid lubrication. Surf. Coat. Technol. 203, 73–79 (2008). https://doi.org/10.1016/j.surfcoat.2008.07.033

    Article  CAS  Google Scholar 

  18. Voevodin, A.A., Zabinski, J.S.: Laser surface texturing for adaptive solid lubrication. Wear 261, 1285–1292 (2006). https://doi.org/10.1016/j.wear.2006.03.013

    Article  CAS  Google Scholar 

  19. Cho, M.: Friction and wear of a hybrid surface texturing of polyphenylene sulfide-filled micropores. Wear 346–347, 158–167 (2016). https://doi.org/10.1016/j.wear.2015.11.010

    Article  CAS  Google Scholar 

  20. Ye, J., Zhang, H., Liu, X., Liu, K.: Low wear steel counterface texture design: a case study using micro-pits texture and alumina–PTFE nanocomposite. Tribol. Lett. 65, 165 (2017). https://doi.org/10.1007/s11249-017-0948-z

    Article  CAS  Google Scholar 

  21. McCook, N., Hamilton, M., Burris, D., Sawyer, W.: Tribological results of PEEK nanocomposites in dry sliding against 440C in various gas environments. Wear 262, 1511–1515 (2007)

    Article  CAS  Google Scholar 

  22. Burris, D.L., Sawyer, W.G.: Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanoparticles. Wear 260, 915–918 (2006)

    Article  CAS  Google Scholar 

  23. San, J., Liu, J., Zhu, B., Liu, Z., Dong, C., Zhang, Q.: Tribological properties of ion-implanted polyphenylene oxide (PPO). Wear 251, 1504–1510 (2001). https://doi.org/10.1016/S0043-1648(01)00805-5

    Article  Google Scholar 

  24. Amstutz, H.C.: Polymers as bearing materials for total hip replacement: a friction and wear analysis. J. Biomed. Mater. Res. 3, 547–568 (1969). https://doi.org/10.1002/jbm.820030402

    Article  CAS  Google Scholar 

  25. Krick, B.A., Pitenis, A.A., Harris, K.L., Junk, C.P., Sawyer, W.G., Brown, S.C., Rosenfeld, H.D., Kasprzak, D.J., Johnson, R.S., Chan, C.D., Blackman, G.S.: Ultralow wear fluoropolymer composites: nanoscale functionality from microscale fillers. Tribol. Int. 95, 245–255 (2016). https://doi.org/10.1016/j.triboint.2015.10.002

    Article  CAS  Google Scholar 

  26. Song, L., Shi, G., Li, Z.: Simulation of laser drilling temperature field by using ANSYS. Acta Armamentarii 5, 879–882 (2006)

    Google Scholar 

  27. Wenyuan, G., Maocai, W., Xiaobing, Z.: Recast layer formed by laser drilling of Ni-based superalloys and progress on its control. Laser J. 24, 1–3 (2003)

    Google Scholar 

  28. Zeng, C., Tian, W., Hua, L.: A comprehensive study of thermal damage consequent to laser surface treatment. Mater. Sci. Eng. A. 564, 381–388 (2013). https://doi.org/10.1016/j.msea.2012.11.078

    Article  CAS  Google Scholar 

  29. Haidar, D.R., Alam, K.I., Burris, D.L.: Tribological insensitivity of an ultralow-wear poly(etheretherketone)–polytetrafluoroethylene polymer blend to changes in environmental moisture. J. Phys. Chem. C 122, 5518–5524 (2018). https://doi.org/10.1021/acs.jpcc.7b12487

    Article  CAS  Google Scholar 

  30. Burris, D.L., Sawyer, W.G.: Measurement uncertainties in wear rates. Tribol. Lett. 36, 81–87 (2009). https://doi.org/10.1007/s11249-009-9477-8

    Article  Google Scholar 

  31. George, D., Mallery, P.: IBM SPSS statistics 23 step by step: a simple guide and reference. Routledge, New York (2016)

    Book  Google Scholar 

  32. Ruxton, G.D., Beauchamp, G.: Time for some a priori thinking about post hoc testing. Behav. Ecol. 19, 690–693 (2008). https://doi.org/10.1093/beheco/arn020

    Article  Google Scholar 

  33. Bahadur, S., Tabor, D.: The wear of filled polytetrafluoroethylene. Wear 98, 1–13 (1984). https://doi.org/10.1016/0043-1648(84)90213-8

    Article  CAS  Google Scholar 

  34. Khare, H.S., Moore, A.C., Haidar, D.R., Gong, L., Ye, J., Rabolt, J.F., Burris, D.L.: Interrelated effects of temperature and environment on wear and tribochemistry of an ultralow wear PTFE composite. J. Phys. Chem. C 119, 16518–16527 (2015). https://doi.org/10.1021/acs.jpcc.5b00947

    Article  CAS  Google Scholar 

  35. Pitenis, A.A., Ewin, J.J., Harris, K.L., Sawyer, W.G., Krick, B.A.: In vacuo tribological behavior of polytetrafluoroethylene (PTFE) and alumina nanocomposites: the importance of water for ultralow wear. Tribol. Lett. (2014). https://doi.org/10.1007/s11249-013-0256-1

    Article  Google Scholar 

  36. Pitenis, A.A., Harris, K.L., Junk, C.P., Blackman, G.S., Sawyer, W.G., Krick, B.A.: Ultralow wear PTFE and alumina composites: it is all about tribochemistry. Tribol. Lett. (2015). https://doi.org/10.1007/s11249-014-0445-6

    Article  Google Scholar 

  37. Wang, X.Y., Ng, G.K.L., Liu, Z., Li, L., Bradley, L.: EPMA microanalysis of recast layers produced during laser drilling of type 305 stainless steel. Thin Solid Films 453–454, 84–88 (2004). https://doi.org/10.1016/j.tsf.2003.11.158

    Article  CAS  Google Scholar 

  38. Imran, M., Mativenga, P.T., Gholinia, A., Withers, P.J.: Assessment of surface integrity of Ni superalloy after electrical-discharge, laser and mechanical micro-drilling processes. Int. J. Adv. Manuf. Technol. 79, 1303–1311 (2015). https://doi.org/10.1007/s00170-015-6909-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 51875153, 51875152, and 51975174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Zhang, Y., Zhang, K. et al. Hybrid Wear-Reducing Micro-pits Counterface Texture Against Polymeric Solid Lubricants. Tribol Lett 68, 33 (2020). https://doi.org/10.1007/s11249-020-1271-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-1271-7

Keywords

Navigation