Skip to main content
Log in

Effect of WS2 Addition on Tribological Behavior of Aluminum at Room and Elevated Temperatures

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The objective of this study is to evaluate the role of WS2-based two-dimensional material as solid lubricant additive to aluminum to reduce the friction. Al-2 vol% WS2 was consolidated by spark plasma sintering into a 99% dense composite. Tribological behavior of Al-2 vol% WS2 and pure Al was evaluated at room temperature and 200 °C using the ball-on-disk method in dry sliding wear conditions. Wear mechanism was studied using wear surface and sub-surface via electron microscopy and focused ion beam milling. Al-2 vol% WS2 showed the lowest coefficient of friction value of 0.55 at 200 °C as compared to 0.82 that of pure aluminum. The wear rate of Al-2 vol% WS2 showed 54 and 29% improvement at room temperature and 200 °C, respectively, as compared to pure Al. The improved tribological properties of Al-2 vol% WS2 are attributed to a tribofilm formation due to the breaking of the weak Van der Waals forces that hold the S–W–S structure. Due to shear forces, a portion of the tribofilm is transferred on the counter surface providing lubrication properties resulting in a stable and low COF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Holmberg, K., Andersson, P., Erdemir, A.: Global energy consumption due to friction in passenger cars. J. Mater. Sci. Tribol. Int. 47, 221–234 (2012)

    Article  Google Scholar 

  2. Chris Evans: Strategy for energy conservation through tribology. Am. Soc. Mech. Eng. 6, 170–172 (1977)

    Google Scholar 

  3. Blau, P.J.: Fifty years of research on the wear of metals. Tribol. Int. 30, 321–331 (1997)

    Article  Google Scholar 

  4. Jiang, C.U.I., Roven, H.J.: Recycling of automotive aluminum. Trans. Nonferrous Met. Soc. 20, 2057–2063 (2010)

    Article  Google Scholar 

  5. Miller, W.S., Zhuang, L., Bottema, J., Wittebrood, A.J., De Smet, P., Haszler, A., Vieregge, A.: Recent development in aluminum alloys for the automotive industry. Mater. Sci. Eng. A280, 37–49 (2000)

    Article  Google Scholar 

  6. Cole, G.S., Sherman, A.M.: Lightweight Materials for Automotive Applications, pp. 48121-20–48121-53. Ford Motor Company, Dearborn (1995)

    Google Scholar 

  7. Hu, Y.-Z., Ma, T.-B.: Tribology of Nanostructured Surfaces, pp. 383–414. Tsinghua University, Elsevier B.V., Beijing (2011)

    Google Scholar 

  8. Menezes, P., Nosonovsky, M., Ingole, S.P., Kailas, S.V., Lovell, M.R.: Tribology for Scientists and Engineers: From Basics to Advanced Concepts. Springer, Berlin (2013)

    Book  Google Scholar 

  9. Rohatgi, P.K., Ray, S., Liu, Y.: Tribological properties of metal matrix—graphite particle composites. Int. Mater. Rev. 37(3), 129–135 (1992)

    Article  Google Scholar 

  10. Liu, Y.B., Lim, S.C., Ray, S., Rohatgi, P.K.: Friction and wear of aluminum–graphite composites: the smearing process of graphite during sliding. Wear 159, 201–205 (1992)

    Article  Google Scholar 

  11. Liu, Y., Rohatgi, P.K., Ray, S.: Tribological characteristics of aluminum 50 vol pct graphite composite. Metall. Trans. 24A, 150–159 (1993)

    Google Scholar 

  12. Wang, H.W., Skeldon, P., Thompson, G.E.: Tribological enhancement of aluminum by porous anodic films containing solid lubricants of MoS2 precursors. Tribol. Trans. 42(1), 202–209 (1999)

    Article  Google Scholar 

  13. Ravindran, P., Manisekar, K., Narayanasamy, R., Narayanasamy, P.: Tribological behavior of powder metallurgy-processed aluminium hybrid composites with the addition of graphite solid lubricant. Ceram. Int. 39(2), 1169–1182 (2013)

    Article  Google Scholar 

  14. Bartolucci, S.F., Paras, J., Rafiee, M.A., Rafiee, J., Lee, S., Kapoor, D., Koratkar, N.: Graphene–aluminum nanocomposites. Mater. Sci. Eng. A 528(27), 7933–7937 (2011)

    Article  Google Scholar 

  15. Shi, X., Song, S., Zhai, W., Wang, M., Zengshi, X., Yao, J., ud Din, A.Q., Zhang, Q.: Tribological behavior of Ni3Al matrix self-lubricating composites containing WS2, Ag and hBN tested from room temperature to 800 C. Mater. Des. 55, 75–84 (2014)

    Article  Google Scholar 

  16. Shusheng, X., Gao, X., Ming, H., Sun, J., Wang, D., Zhou, F., Weng, L., Liu, W.: Morphology evolution of Ag alloyed WS2 films and the significantly enhanced mechanical and tribological properties. Surf. Coat. Technol. 238, 197–206 (2014)

    Article  Google Scholar 

  17. Li, H., Yin, Z., Jiang, D., Huo, Y., Cui, Y.: Tribological behavior of hybrid PTFE/Kevlar fabric composites with nano-Si3N4 and submicron size WS2 fillers. Tribol. Int. 80, 172–178 (2014)

    Article  Google Scholar 

  18. Rapoport, L., Fleischer, N., Tenne, R.: Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites. J. Mater. Chem. 15, 1782–1788 (2005)

    Article  Google Scholar 

  19. Maharaj, D., Bhushan, B.: Effect of MoS2 and WS2 nanotubes on nanofriction and wear reduction in dry and liquid environments. Tribol. Lett. 49(2), 323–339 (2013)

    Article  Google Scholar 

  20. Huang, S., Feng, Y., Liu, H., Ding, K., Qian, G.: Electrical sliding friction and wear properties of Cu–MoS2–graphite–WS2 nanotubes composites in air and vacuum conditions. Mater. Sci. Eng. A 560, 685–692 (2013)

    Article  Google Scholar 

  21. Prasad, S.V., McDevitt, N.T., Zabinski, J.S.: Tribology of tungsten disulfide films in humid environments: the role of a tailored metal-matrix composite substrate. Wear 230, 24–34 (1999)

    Article  Google Scholar 

  22. Zhang, X.-F., Zhang, X.-L., Wang, A.-H., Huang, Z.-W.: Microstructure and properties of HVOF sprayed Ni-based submicron WS2/CaF2 self-lubricating composite coating. Trans. Nonferrous Met. Soc. China 19, 85–92 (2009)

    Article  Google Scholar 

  23. Cohen, S.R., Rapoport, L., Ponomarev, E.A., Cohen, H., Tsirlina, T., Tenne, R., Levy-Clement, C.: The tribological behavior of type II textured MX2 (M = Mo, W; X = S, Se) films. Thin Solid Films 324, 190–197 (1998)

    Article  Google Scholar 

  24. Prasad, S.V., Zabinski, J.S.: Tribology of tungsten disulfide (WS2) characterization of wear-induced transfer films. J. Mater. Sci. Lett. 12, 1413–1415 (1993)

    Article  Google Scholar 

  25. Ratoi, M., Niste, V.B., Walker, J., Zekonyte, J.: Mechanism of action of WS2 lubricant nanoadditives in high pressure contacts. Tribol. Lett. 52, 81–91 (2013)

    Article  Google Scholar 

  26. Du, G.Y., Ba, D.C., Tan, Z., Liu, K.: Research on frictional behavior of tungsten disulfide thin films prepared by RF magnetron sputtering on restless steel. Phys. Procedia 32, 532–538 (2012)

    Article  Google Scholar 

  27. Greenwood, O.D., Moulzolf, S.C., Blau, P.J., Lad, R.J.: The influence of microstructure on tribological properties of WO thin films. J. Wear 232, 84–90 (1999)

    Article  Google Scholar 

  28. Nieto, A., Bisht, A., Zhang, C., Lahiri, D., Agarwal, A.: Graphene reinforced metal and ceramic composites-a review. Int. Mater. Rev. 62, 241–302 (2017)

    Article  Google Scholar 

  29. Priest, M., Taylor, C.M.: Automobile engine tribology—approaching the surface. Wear 241, 193–203 (2000)

    Article  Google Scholar 

  30. Priest, M., Dowson, D., Taylor, C.M.: Predictive wear modelling of lubricated piston rings in a diesel engine. Wear 231, 89–101 (1999)

    Article  Google Scholar 

  31. Yang, J., Voiry, D., Ahn, S.-J., Kang, D., Kim, A.Y., Chhowalla, M., Shin, H.-S.: Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew. Chem. Int. Ed. 52, 1–5 (2013)

    Article  Google Scholar 

  32. Berkdemir, A., Gutierrez, H.R., Botello, A.R., Perea-Lopez, N., Elias, A.L., Chia, C.-I., Wang, B., Crespi, V.H., Lopez-Urias, F., Charlier, J.-C., Terrones, H., Terrones, M.: Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 3, 1755 (2013). doi:10.1038/srep01755

    Article  Google Scholar 

Download references

Acknowledgement

Authors thank Advanced Materials Engineering Research Institute at Florida International University for providing characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Agarwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rengifo, S., Zhang, C., Harimkar, S. et al. Effect of WS2 Addition on Tribological Behavior of Aluminum at Room and Elevated Temperatures. Tribol Lett 65, 76 (2017). https://doi.org/10.1007/s11249-017-0856-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0856-2

Keywords

Navigation